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Abstract

Provenance, or information about the origin or derivation of data, is important
for assessing the trustworthiness of data and identifying and correcting mistakes.
Most prior implementations of data provenance have involved heavyweight
modifications to database systems and little attention has been paid to how
the provenance data can be used outside such a system. We present extensions
to the Links programming language that build on its support for language-
integrated query to support provenance queries by rewriting and normalizing
monadic comprehensions and extending the type system to distinguish provenance
metadata from normal data. The main contribution of this article is to show that
the two most common forms of provenance can be implemented efficiently and
used safely as a programming language feature with no changes to the database
system.

1. Introduction

A Web application typically spans at least three different computational
models: the server-side program, browser-side HTML or JavaScript, and SQL to
execute on the database. Coordinating these layers is a considerable challenge.
Recently, programming languages such as Links [14], Hop [34] and Ur/Web [12]
have pioneered a cross-tier approach to Web programming. The programmer
writes a single program, which can be type-checked and analyzed in its own right,
but parts of it are executed to run efficiently on the multi-tier Web architecture
by translation to HTML, JavaScript and SQL. Cross-tier Web programming
builds on language-integrated query [30, 33], a technique for safely embedding
database queries into programming languages, which has been popularized by
Microsoft’s LINQ library, which provides language-integrated query for .NET
languages such as C# and F#. (The language Links was developed concurrently
with Meijer et al.’s work on LINQ; their names are coincidentally similar but
they are different systems.)

When something goes wrong in a database-backed Web application, under-
standing what has gone wrong and how to fix it is also a challenge. Often, the
database is the primary “state” of the program, and problems arise when this
state becomes inconsistent or contains erroneous data. For example, Figure 1
shows Links code for querying data from a (fictional) Scottish tourism database,

Email addresses: stefan.fehrenbach@ed.ac.uk (Stefan Fehrenbach),
jcheney@inf.ed.ac.uk (James Cheney)

Preprint submitted to Elsevier August 16, 2017



var agencies = table ”Agencies”
with (name:String, based in:String, phone:String)
from db;
var externalTours = table ”ExternalTours”
with (name:String, destination:String, type:String, price:Int)
from db;
var q1 = query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name && e.type == ”boat”)

[(name = e.name,
phone = a.phone)]

}

Figure 1: Links table declarations and example query

name phone

EdinTours 412 1200
EdinTours 412 1200
Burns’s 607 3000

Figure 2: Example query results

with the result shown in Figure 2. Suppose one of the phone numbers is incorrect:
we might want to know where in the source database to find the source of this
incorrect data, so that we can correct it. Alternatively, suppose we are curious
why some data is produced: for example, the result shows EdinTours twice. If we
were not expecting these results, e.g. because we believe that EdinTours is a bus
tour agency and does not offer boat tours, then we need to see additional input
data to understand why they were produced.

Automatic techniques for producing such explanations, often called prove-
nance, have been explored extensively in the database literature [16, 5, 25].
Neither conventional nor cross-tier Web programming currently provides direct
support for provenance. A number of implementation strategies for efficiently
computing provenance for query results have been explored [3, 23, 24], but no
prior work considers the interaction of provenance with clients of the database.

We propose language-integrated provenance, a new approach to implementing
provenance that leverages the benefits of language-integrated query. In this
article, we present two instances of this approach, one which computes where-
provenance showing where in the underlying database a result was copied
from, and another which computes lineage showing all of the parts of the
database that were needed to compute part of the result. Both techniques are
implemented by a straightforward source-to-source translation which adjusts the
types of query expressions to incorporate provenance information and changes
the query behavior to generate and propagate this information. Our approach is
implemented in Links, and benefits from its strong support for rewriting queries
to efficient SQL equivalents, but the underlying ideas may be applicable to other
languages that support language-integrated query, such as F# [38], SML# [31],
or Ur/Web [12].
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Most prior implementations of provenance involve changes to relational
database systems and extensions to the SQL query language, departing from
the SQL standard that relational databases implement. To date, none of these
proposals have been incorporated into the SQL standard or supported by main-
stream database systems. If such extensions are adopted in the future, however,
we can simply generate queries that use these extensions in Links. In some of
these systems, enabling provenance in a query changes the result type of the
query (adding an unpredictable number of columns). Our approach is the first
(to the best of our knowledge) to provide type-system support that makes sure
that the extra information provided by language-integrated provenance queries
is used safely by the client.

Our approach builds on Links’s support for queries that construct nested
collections [11]. This capability is crucial for lineage, because the lineage of
an output record is a set of relevant input records. Moreover, our provenance
translations can be used with queries that construct nested results. Our approach
is also distinctive in allowing fine-grained control over where-provenance. In
particular, the programmer can decide whether to enable or disable where-
provenance tracking for individual input table fields, and whether to keep or
discard provenance for each result field.

We present two simple extensions to Links to support where-provenance and
lineage, and give (provably type-preserving) translations from both extensions
to plain Links. We have implemented both approaches and experimentally
validated them using a synthetic benchmark. Provenance typically slows down
query evaluation because more data is manipulated. For where-provenance, our
experiments indicate a constant factor overhead of 1.5–2.8. For lineage, the
slowdown is between 1.25 and 7.55, in part because evaluating lineage queries
usually requires manipulating more data. We also compare Links to Perm [23], a
database-integrated provenance system, whose authors report slowdowns of 3–30
for a comparable form of lineage. In our experiments Perm generally outperforms
Links but Links is within an order of magnitude.

Contributions and outline. Section 2 gives a high-level overview of our approach,
illustrated via examples. Section 3 reviews background material on Links upon
which we rely. This article makes the following three contributions:

• Definition of the LinksW and LinksL extensions to Links, along with their
semantics and provenance correctness properties (Section 4)

• Implementations of LinksW and LinksL by type-preserving translation to
plain Links (Section 5)

• Experimental evaluation of the implementations on a number of queries
(Section 6)

Related work is discussed in greater detail in Section 7.
This article significantly extends an earlier conference paper [17]. The

conference version presented the where-provenance and lineage translations
and their implementation and evaluation; this article in addition describes the
semantics of Links (Section 3), and proves correctness and type-preservation
properties that were not included in the conference paper (Sections 4 and 5).
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Agencies

(oid) name based in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

ExternalTours

(oid) name destination type price in £

3 EdinTours Edinburgh bus 20
4 EdinTours Loch Ness bus 50
5 EdinTours Loch Ness boat 200
6 EdinTours Firth of Forth boat 50
7 Burns’s Islay boat 100
8 Burns’s Mallaig train 40

Figure 3: Example input data

2. Overview

In this section we give an overview of our approach, first reviewing necessary
background on Links and language-integrated query based on comprehensions,
and then showing how provenance can be supported by query rewriting in this
framework. We will use a running example of a simple tours database, with
some example data shown in Figure 3.

2.1. Language-integrated query

Writing programs that interact with databases can be tricky, because of
mismatches between the models of computation and data structures used in
databases and those used in conventional programming languages. The default
solution (employed by JDBC and other typical database interface libraries) is for
the programmer to write queries or other database commands as uninterpreted
strings in the host language, and these are sent to the database to be executed.
This means that the types and names of fields in the query cannot be checked
at compile time and any errors will only be discovered as a result of a run-time
crash or exception. More insidiously, failure to adequately sanitize user-provided
parameters in queries opens the door to SQL injection attacks [35].

Language-integrated query is a technique for embedding queries into the
host programming language so that their types can be checked statically and
parameters are automatically sanitized. Broadly, there are two common ap-
proaches to language-integrated query. The first approach, which we call SQL
embedding, adds specialized constructs resembling SQL queries to the host lan-
guage, so that they can be typechecked and handled correctly by the program.
This is the approach taken in C# [30, 33], SML# [31], and Ur/Web [12]. The
second approach, which we call comprehension, uses monadic comprehensions
or related constructs of the host language, and generates queries from such
expressions. The comprehension approach builds on foundations for querying
databases using comprehensions developed by Buneman et al. [4], and has been
adopted in languages such as F# [38] and Links [14] as well as libraries such as
Database-Supported Haskell [19].

The advantage of the comprehension approach is that it provides a higher level
of abstraction for programmers to write queries, without sacrificing performance.
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This advantage is critical to our work, so we will explain it in some detail. For
example, the query shown in Figure 1 illustrates Links comprehension syntax. It
asks for the names and phone numbers of all agencies having an external tour of
type ”boat”. The keyword for performs a comprehension over a table (or other
collection), and the where keyword imposes a Boolean condition filtering the
results. The result of each iteration of the comprehension is a singleton collection
containing the record (name = e.name,phone = a.phone).

Monadic comprehensions do not always correspond exactly to SQL queries,
but for queries that map flat database tables to flat results, it is possible to
normalize these comprehension expressions to a form that is easily translatable
to SQL [41]. For example, the following query

var q1’ = query {
for (e <-- externalTours)
where (e.type == ”boat”)
for (a <-- agencies)
where (a.name == e.name)
[(name = e.name, phone = a.phone)]

}

does not directly correspond to a SQL query due to the alternation of for and
where operations; nevertheless, query normalization generates a single equivalent
SQL query in which the where conditions are both pushed into the SQL query’s
WHERE clause:

SELECT e.name AS name, a.phone AS phone

FROM ExternalTours e, Agencies a

WHERE e.type = ’boat’ AND a.name = e.name

Normalization frees the programmer to write queries in more natural ways, rather
than having to fit the query into a pre-defined template expected by SQL.

However, this freedom can also lead to problems, for example if the program-
mer writes a query-like expression that contains an operation, such as print or
regular expression matching, that cannot be performed on the database. In early
versions of Links, this could lead to unpredictable performance, because queries
would unexpectedly be executed on the server instead of inside the database.
The current version uses a type-and-effect system (as described by Cooper [13]
and Lindley and Cheney [29]) to track which parts of the program must be
executed in the host language and which parts may be executed on the database.
Using the query keyword above forces the typechecker to check that the code
inside the braces will successfully execute on the database.

2.2. Higher-order functions and nested query results

Although comprehension-based language-integrated query may seem (at
first glance) to be little more than a notational convenience, it has since been
extended to provide even greater flexibility to programmers without sacrificing
performance.

The original results on normalization (due to Wong [41]) handle queries
over flat input tables and producing flat result tables, and did not allow calling
user-defined functions inside queries. Subsequent work has shown how to support
higher-order functions [13, 26] and queries that construct nested collections [11].
For example, we can use functions to factor the previous query into reusable
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components, provided the functions are nonrecursive and only perform operations
that are allowed in the database.

fun matchingAgencies(name) {
for (a <-- agencies)
where (a.name == name)

[(name = e.name, phone = a.phone)]
}
var q1’’ = query {
for (e <-- externalTours)
where (e.type == ”boat”)

matchingAgencies(e.name)
}

Cooper’s results show that these queries still normalize to SQL-equivalent
queries, and this algorithm is implemented in Links. Similarly, we can write
queries whose result type is an arbitrary combination of record and collection
types, not just a flat collection of records of base types as supported by SQL:

var q2 = query {
for (a <-- agencies)

[(name = a.name,
tours = for (e <-- externalTours)

where (e.name == a.name)
[(dest = e.destination, type = e.type)]

}

This query produces records whose second tours component is itself a collection
— that is, the query result is of the type [(name:String,[(dest:String, type:Type)])]

which contains a nested occurrence of the collection type constructor []. SQL
does not directly support queries producing such nested results — it requires
flat inputs and query results.

Our previous work on query shredding [11] gives an algorithm that evaluates
queries with nested results efficiently by translation to SQL. Given a query whose
return type contains n occurrences of the collection type constructor, query
shredding generates n SQL queries that can be evaluated on the database, and
constructs the nested result from the resulting tables. This is typically much
more efficient than loading the database data into memory and evaluating the
query there. Links supports query shredding and we will use it in this article to
implement lineage.

Both capabilities, higher-order functions and nested query results, are es-
sential building blocks for our approach to provenance. In what follows, we
will use these techniques without further explanation of their implementation.
The details are covered in previous papers [13, 29, 11], but are not needed to
understand our approach.

2.3. Where-provenance and lineage

As explained in the introduction, provenance tracking for queries has been
explored extensively in the database community. We are now in a position
to explain how these provenance techniques can be implemented on top of
language-integrated query in Links. We review two of the most common forms
of provenance, and illustrate our approach using examples; the rest of the article
will use similar examples to illustrate our implementation approach.
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Where-provenance is information about where information in the query
result “came from” (or was copied from) in the input. Buneman et al. [5]
introduced this idea; our approach is based on a later presentation for the nested
relational calculus by Buneman et al. [6]. A common reason for asking for
where-provenance is to identify the source of incorrect (or surprising) data in a
query result. For example, if a phone number in the result of the example query
is incorrect, we might ask for its where-provenance. In our system, this involves
modifying the input table declaration and query as follows:

var agencies = table ”Agencies”
with (name:String, based in:String, phone:String)
where phone prov default

The annotation where phone prov default says to assign phone numbers the “de-
fault” provenance annotation of the form (Agencies, phone, i) where i is the object
id (oid) of the corresponding row. The field value will be of type Prov(String);
the data value can be accessed using the keyword data and the provenance can
be accessed using the keyword prov, as follows:

var q1’’’ = query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name && e.type == ”boat”)

[(name = e.name,
phone = data a.phone, p phone = prov a.phone)]

}

Figure 4: LinksW query q1′′′.

The result of this query is as follows:

name phone p phone

EdinTours 412 1200 (Agencies,phone,1)

EdinTours 412 1200 (Agencies,phone,1)

Burns’s 607 3000 (Agencies,phone,2)

We would like to emphasize one important point about our approach to
where-provenance: as illustrated by the above query, we need to change the
table definitions to indicate which fields carry provenance, and we also need to
annotate the query to indicate where the data or provenance are used. This
effort is reasonable because queries are typically small, but alternative strategies,
such as automatically annotating all fields, could also be considered.

Why-provenance is information that explains “why” a result was produced.
In a database query setting, this is usually taken to mean a justification or witness
to the query result, that is, a subset of the input records that includes all of
the data needed to generate the result record. Actually, several related forms of
why-provenance have been studied [16, 5, 7, 24], however, many of these only
make sense for set-valued collections, whereas Links currently supports multiset
semantics. In this article, we focus on a simple form of why-provenance called
lineage which is applicable to either semantics.

Intuitively, the lineage of a record r in the result of a query is a subset L of
the records in the underlying database db that “justifies” or “witnesses” the fact
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that r is in the result of Q on db. That is, running Q on the lineage L should
produce a result containing r, i.e. r ∈ Q(L). Obviously, this property can be
satisfied by many subsets of the input database, including the whole database
db, and this is part of the reason why there exist several different definitions of
why-provenance (for example, to require minimality). We follow the common
approach of defining the lineage to be the set of all input database records
accessed in the process of producing r; this is a safe overapproximation to the
minimal lineage, and usually is much smaller than the whole database.

We identify records in input database tables using pairs such as (Agencies,2)

where the first component is the table name and the second is the row id, and
the lineage of an element of a collection is just a collection of such pairs. (Again,
this has the benefit that we can use a single type for references to data in
multiple input tables.) Using this representation, the lineage for q1 (Figure 1) is
as follows:

name phone lineage

EdinTours 412 1200 [(Agencies,1),(ExternalTours,5)]

EdinTours 412 1200 [(Agencies,1),(ExternalTours,6)]

Burns’s 607 3000 [(Agencies,2),(ExternalTours,7)]

In our system, to obtain these results we simply use the keyword lineage

instead of query; for example, for q1 we would simply write:

lineage {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name && e.type == ”boat”)

[(name = e.name,
phone = a.phone)]

}

Links’s capabilities for normalizing and efficiently evaluating queries provide
the key ingredients needed for computing provenance. For both where-provenance
and lineage, we can translate programs using the extensions described above, in
a way that both preserves types and ensures that the resulting query expressions
can be converted to SQL queries. In the rest of this article, we give the details
of these translations and present an experimental evaluation showing that its
performance is reasonable.

2.4. Pragmatics and limitations

Most research on provenance in databases has focused on the process of
propagating annotations (e.g. source locations) through queries to the output.
This article is the first to consider support for provenance at the programming
language level. Our attempt to do so has raised some interesting issues that
have not been considered in this previous work, such as:

1. Where do the initial provenance annotations come from?

2. What are appropriate correctness criteria in a setting where the underlying
program may be updated (by the program or other database users)?

3. Should we also track provenance information for updates, and if so how?
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In our approach, we require table declarations to be annotated to indicate how
the table’s data is annotated with provenance. Thus, we do not assume that
the underlying relational database schema contains provenance data, but if such
data is available we can use it. However, as we shall see, this complicates matters
since we need to be able to handle updates to such tables. We deal with this
by translating table references to pairs, with the first component containing the
raw table reference for use in updates and the second containing a delayed query
expression that produces the initial annotated version of the table for use in
queries.

Concerning the second question, we revisit correctness criteria for where-
provenance and lineage that have been considered in previous work, and show
that similar properties hold for our approach. However, as in previous work, our
correctness properties assume that the underlying database is unchanging. This
is of course not a realistic assumption: Links includes update operations that
can change the database tables, and other database users might concurrently
update the data or even change the structure of the data. It is an interesting
question (beyond the scope of this paper) how to generalize existing criteria for
provenance correctness to this setting.

We mention two additional limitations. First, since Links itself does not yet
support grouping and aggregation in queries, our approach does not attempt to
handle these features either. This is an important obstacle to be overcome in
future work. Likewise, we do not consider the process of tracking provenance
for updates to the database, even when the updates are performed by Links.
This has been considered by Buneman et al. [6], but in this paper we focus
on provenance tracking for queries and leave (language-integrated) provenance
tracking for updates for future work.

3. Links background

We first review a subset of the Links programming language that includes
all of the features relevant to our work; we omit some features (such as effect
typing, polymorphism, and concurrency) that are not required for the rest of the
article. We also present a simplified operational semantics for Links, omitting
detail regarding query normalization and shredding that is presented in more
detail in previous work [29, 11]. Appendix A lists notations introduced in this
paper, with a brief explanation and reference to their first occurrence.

Figure 5 presents a simplified subset of Links syntax, sufficient for explaining
the provenance translations in this article. Types include base types O (such
as integers, booleans and strings), table types table(li: Ai)

n
i=1, function types

A -> B, record types (li: Ai)
n
i=1, and collection types [A]. In Links, collection

types are treated as multisets inside database queries (reflecting SQL’s default
multiset semantics), but represented as lists during ordinary execution.

Expressions include standard constructs such as constants, variables, record
construction and field projection, conditionals, n-ary recursive functions and
application. We freely use pair types (A,B) and pair syntax (M,N) and projec-
tions M.1, M.2 etc., which are easily definable using records. Constants c can be
functions such as integer addition, equality tests, etc.; their types are collected
in a signature Σ. The signature Σ is also a simple model of a database: it maps
tables to their contents. In Links we write var x = M ;N for binding a variable
x to the value of M in expression N . The semantics of the Links constructs
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Base types O ::= Int | Bool | String
Rows R ::= · | R, l : A

Table types T ::= table(R)

Types A,B ::= O | T | A -> B | (R) | [A]

Contexts Γ ::= · | Γ, x : A

Expressions L,M,N ::= c | x | (li = Mi)
n
i=1 | N.l

| fun f(xi|ni=0) N | N(Mi|ni=0)

| var x = M ;N | if (L) {M} else {N}
| query {N} | table name with (li : Oi)

n
i=1

| [] | [N ] | N ++ M | empty(M)

| for (x <- L) M | where(M) N

| for (x <-- L) M | insert L values M

| update (x <-- L) where M set N

| delete (x <-- L) where M

Figure 5: Syntax of a subset of Links.

discussed so far is call-by-value. The expression query {M} introduces a query
block, whose content is not evaluated in the usual call-by-value fashion but in-
stead first normalized to a form equivalent to an SQL query, and then submitted
to the database server. The resulting table (or tables, in the case of a nested
query result) are then translated into a Links value. Queries can be constructed
using the expressions for the empty collection [], singleton collection [M ], and
concatenation of collections M ++ N . In addition, the comprehension expressions
for(x <-- M) N and for(x <- M) L allow us to form queries involving iteration
over a collection. The difference between the two expressions is that for(x <-- M)

expects M to be a table reference, whereas for(x <- M) expects M to be a collec-
tion. The expression where (M) N is equivalent to if (M) {N} else {[]}, and
is intended for use in filtering query results. The expression empty (M) tests
whether the collection produced by M is empty. These comprehension syntax
constructs can also be used outside a query block, but they are not guaranteed to
be translated to queries in that case. The insert, delete and update expressions
perform updates on database tables; they are implemented by direct translation
to the analogous SQL update operations.

Figure 6 presents the evaluation judgment Σ,M → Σ′,M ′ for Links expres-
sions. We employ evaluation contexts (following Felleisen and Hieb [18]) E
and define the semantics using several axioms that handle redexes and a single
inference rule that shows how to evaluate an expression in which a redex occurs
inside an evaluation context. The rule for update uses syntactic sugar for record
update called with for brevity. Most of the rules in Figure 6 are pure in the sense
that they have no side-effect on the state of the database. Only the rules for
insert, delete and update may change the database state. The rules here present
the semantics of Links at a high level, and do not model the exact behavior of
query evaluation; instead the query {M} operation just evaluates to M . We
assume functions used in database queries and updates are total and have a
database equivalent. This is assured by a type and effect system in the full
language. Lindley and Cheney [29] present a more detailed model that also
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Σ, (fun f(xi|ni=0)M)(Vi|ni=0) −→ Σ,M [f := fun f(xi)M,xi := Vi]

Σ, varx = V ;M −→ Σ,M [x := V ]

Σ, (li = Vi)
n
i=1.lk −→ Σ, Vk

Σ, if (true)M elseN −→ Σ,M

Σ, if (false)M elseN −→ Σ, N

Σ, queryM −→ Σ,M

Σ, empty([]) −→ Σ, true

Σ, empty(V ) −→ Σ, false iff V 6= []

Σ, for (x <- [])M −→ Σ, []

Σ, for (x <- [V ])M −→ Σ,M [x := V ]

Σ, for (x <-V ++W )M −→ Σ, (for (x <-V )M) ++ (for (x <-W )M)

Σ, for (x <-- tablen)M −→ Σ, for (x <-Σ(n))M

Σ, insert (table t) valuesV −→ Σ[t 7→ Σ(t) ++V ], ()

Σ′ = Σ[t 7→ [X ∈ Σ(t)|Σ,M [x := X] −→∗ Σ, false]]

Σ, delete (x <-- table t)whereM −→ Σ′, ()

Σ′ = Σ[t 7→ [u(X)|X ∈ Σ(t)]] u(X) =


(X with li = Vi) if M [x := X] −→∗ true

and Ni[x := X] −→∗ Vi

X otherwise

Σ, update (x <-- table t)whereM set (li = Ni)
n
i=1 −→ Σ′, ()

Σ,M −→ Σ′,M ′

Σ, E [M ] −→ Σ′, E [M ′]

E ::= [] | E(M1, . . . ,Mn) | V (V1, . . . , Vi−1, E ,Mi+1, . . . ,Mn)
| (l1 = V1, . . . , li−1 = Vi−1, li = E , li+1 = Mi+1, . . . , ln = Mn) | E .l
| if (E)M elseN
| empty(E)
| [E ] | E ++M | V ++ E
| for (x <- E)M | for (x <-- E)M
| insert (E)M | insert (tablen) E
| update (x <-- E)whereM set (li = Ni)

n
i=1

| delete (x <-- E)whereM

Figure 6: Semantics of Links.
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shows how flat Links queries are normalized and evaluated externally using SQL
and Cheney et al. [11] shows how nested queries are implemented.

The type system (again a simplification of the full system) is illustrated in
Figure 7. Many rules are standard; we assume a typing signature Σ mapping
constants and primitive operations to their types. The rule for query {M} refers
to an auxiliary judgment A :: QType that essentially checks that A is a valid
query result type, meaning that it is constructed using base types and collection
or record type constructors only:

O :: QType

[Ai :: QType]ni=1

(li : Ai)
n
i=1 :: QType

A :: QType

[A] :: QType

Similarly, the R :: BaseRow judgment ensures that the types used in a row are
all base types:

· :: BaseRow
R :: BaseRow

R, l : O :: BaseRow

The full Links type system also checks that the body M uses only features
available on the database (and only calls functions that satisfy the same restric-
tion). The rules for other query operations are straightforward, and similar
to those for monadic comprehensions in other systems. Finally, the rules for
updates (insert, update, and delete) are also mildly simplified; in the full system,
the conditions and update expressions are required to be database-executable
operations. Lindley and Cheney [29] present a more complete formalization of
Links’s type system that soundly characterizes the intended run-time behavior.

The core language of Links we are using is a simplification of the full language
in several respects. Links includes a number of features (e.g. recursive datatypes,
XML literals, client/server annotations, and concurrency features) that are
important parts of its Web programming capabilities but not needed to explain
our contribution. Links also uses a type-and-effect system to determine whether
the code inside a query block is translatable to SQL, and which functions can
be called safely from query blocks. We use a simplified version of Links’s type
system that leaves out these effects and does not deal with polymorphism. Our
implementation does handle these features, with some limitations discussed later.

4. Extending Links with provenance

In this paper we follow a well-explored approach to modeling provenance
by propagating annotations of various kinds. Roughly speaking, the idea is
to interpret a query using a nonstandard semantics over data with additional
annotations on fields or records. The nonstandard semantics propagates annota-
tions from the input to the output in a way that is intended to convey useful
information about how the results were derived from the inputs; sometimes the
semantics is proved correct with respect to some specification of the intended
meaning. This idea dates to Wang and Madnick’s polygen model [40], and is
adopted in much subsequent work on provenance in databases (see [7] for a
survey).

In this section we describe two extensions of Links: LinksW and LinksL which
provide language support for where-provenance and lineage, respectively. For
both languages, we discuss language design, syntax, semantics, type system, and
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Const
Σ(c) = A

Γ ` c : A

Var
x : A ∈ Γ

Γ ` x : A

Record
Γ `Mi : Ai (i ∈ {1, . . . , n})
Γ ` (li = Mi)

n
i=1 : (li : Ai)

n
i=1

Projection
Γ `M : (li : Ai)

n
i=1

Γ `M .lk : Ak

Fun
Γ, [xi : Ai]

n
i=1 `M : B

Γ ` fun (xi|ni=1){M} : (Ai|ni=1) -> B

App
Γ `M : (Ai|ni=1) -> B Γ ` Ni : Ai (i ∈ {1, . . . , n})

Γ `M(Ni|ni=1) : B

Var
Γ `M : A Γ, x : A ` N : B

Γ ` var x = M ;N : B

Query

Γ `M : [A] A :: QType

Γ ` query {M} : [A]

Empty
Γ `M : [A]

Γ ` empty(M) : Bool

Table
R :: BaseRow

Γ ` table n with (R) : table(R)

Empty-List

Γ ` [] : [A]

List
Γ `M : A

Γ ` [M ] : [A]

Concat
Γ `M : [A] Γ ` N : [A]

Γ `M ++ N : [A]

For-List
Γ ` L : [A] Γ, x : A `M : [B]

Γ ` for (x <- L) M : [B]

Where
Γ `M : Bool Γ ` N : [B]

Γ ` where (M) N : [B]

For-Table
Γ ` L : table(R) Γ, x : (R) `M : [B]

Γ ` for (x <-- L) M : [B]

Insert
Γ ` L : table(R) Γ `M : [(R)]

Γ ` insert L values M : ()

Update
Γ ` L : table(R) Γ, x : (R) `M : Bool Γ, x : (R) ` N : (R)

Γ ` update (x <-- L) where M set N : ()

Delete
Γ ` L : table(R) Γ, x : (R) `M : Bool

Γ ` delete (x <-- L) where M : ()

Figure 7: Typing rules for Links.
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most importantly, how provenance annotations are propagated. We discuss how
to provide initial annotations for LinksW here, and in Section 5 for LinksL. For
both languages, the correctness theorems are only concerned with the faithful
propagation of annotations, not what the annotations actually are.

4.1. LinksW

LinksW extends Links with language support for computing the where-prove-
nance of database queries. The syntax shown in Figure 5 is extended as follows:

V ::= · · · | V c

O ::= · · · | Prov(O)

L,M,N ::= · · · | data M | prov M | table n with (R) where S

S ::= · | S, l prov s

s ::= default |M

Values V can be annotated with an element c of some sufficiently large set
of distinguishable atomic annotations, often called colors. We will use where-
provenance triples for colors. That is, an annotation consists of a triple (R, f, i)
where R is the source table name, f is the field name, and i is the row identifier.
We introduce the type constructor Prov(O), where O is a type argument of base
type. We treat Prov(O) itself as a base type, so that it can be used as part of
a table type. (This is needed for initializing provenance as explained below.)
Values of type Prov(O) are annotated values V c, where the annotation consists
of a triple (R, f, i) where R is the source table name, f is the field name, and
i is the row identifier. For example, 42(”QA”,”a”,23) represents the answer 42
which was copied from row 23, column a, of table QA. The syntax above allows
arbitrary values to be annotated; however, the type system will only permit
values of base type to be annotated. Annotated values are not available in source
programs; only the LinksW runtime can construct annotated values.

Σ, provV c −→ Σ, c
Σ, dataV c −→ Σ, V

E ::= · · · | prov E | data E

Figure 8: Additional evaluation and context rules for LinksW.

We add two additional keywords prov and data to extract from an annotated
value the provenance annotation and the value itself, respectively. We extend
the semantics from Figure 6 with rules for these keywords as seen in Figure 8.

Only the LinksL runtime can create annotated values, and it only annotates
database values. We allow programmers to indicate which columns in a database
table should carry annotations and give some control over what the annotations
themselves are. To this end, we extend the syntax of table expressions to
allow a list of provenance initialization specifications l prov s. A specification
s is either the keyword default or an expression M which is expected to be of
type (li : Oi) -> (String,String, Int). This way we have three different kinds
of columns: plain columns without annotations; columns with default where-
provenance where the annotation will be the table name, column name, and the

14



Prov
Γ `M : Prov(A)

Γ ` prov M : (String, String, Int)

Data
Γ `M : Prov(A)

Γ ` data M : A

Table
R :: BaseRow Γ ` S : ProvSpec(R)

Γ ` table n with (R) where S : table(R . S)

Insert
Γ ` L : table(R) Γ `M : [(�R�)]

Γ ` insert L values M : ()

Update
Γ ` L : table(R) Γ, x : (�R�) `M : Bool Γ, x : (�R�) ` N : (R)

Γ ` update (x <-- L) where M set N : ()

Delete
Γ ` L : table(R) Γ, x : (�R�) `M : Bool

Γ ` delete (x <-- L) where M : ()

Γ ` · : ProvSpec(R)

Γ ` S : ProvSpec(R)

Γ ` S, l prov default : ProvSpec(R)

Γ ` S : ProvSpec(R) Γ `M : (R) -> (String,String, Int)

Γ ` S, l prov M : ProvSpec(R)

Figure 9: Additional typing rules for LinksW.

�O� = O

�Prov(A)� = �A�

�(li : Ai)
n
i=1� = (li : �Ai�)

n
i=1

R . · = R

(R, l : O) . (S, l prov s) = (R . S), l : Prov(O)

Figure 10: LinksW type erasure and augmentation.
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row’s oid; and columns with annotations that are computed by some user-defined
function that takes the table row as input.

Default where-provenance can be understood as user-defined where-prove-
nance with a compiler-generated function of the form fun (r) { (T, C, r.oid) }
where T and C are replaced by the table and column name, respectively. For
example, if we added default where-provenance to the phone field of the Agencies
table, we would execute the following function on every row, to obtain the phone
numbers provenance: fun (a) { (”Agencies”, ”phone”, a.oid) }.

The typing rules for the new constructs of LinksW are shown in Figure 9.
These rules employ an auxiliary judgment Γ ` S : ProvSpec(R), meaning that in
context Γ, the provenance specification S is valid with respect to record type
R. As suggested by the typing rule, the prov keyword extracts the provenance
from a value of type Prov(A), and data extracts its data, the A-value. The most
complex rule is that for the table construct.

The rules make use of an erasure operation �R� that takes a record or base
type and replaces all occurrences of Prov(A) with A. The rule for typing table
references also uses an auxiliary operation R . S that defines the type of the
provenance view of a table whose fields are described by R and whose provenance
specification is S. As for ordinary tables, we check that the fields are of base
type. These operations are defined in Figure 10.

The following proofs and definitions are based on previous work by Buneman
et al. [6] in the context of nested relational algebra. The main correctness property
of where-provenance is that annotations on values are correctly propagated. It
should not be the case that we construct annotated values out of thin air. For
the propagation behavior to be correct, it does not matter what the annotations
are or where they come from. Buneman et al. discuss some other interesting
properties which do not hold in our language. In their work, annotations are
completely abstract, and queries have no way to inspect them. Therefore, they
can show that queries are invariant under recoloring of the input. LinksW has
the prov keyword to inspect provenance, therefore we cannot expect the same to
hold here. However, we speculate that a similar property holds for sufficiently
polymorphic functions.

We assume a context Σ where values inside tables are annotated with col-
ors. We do not make any assumptions about these colors. However, they are
particularly useful when they are distinct. In the case of distinct annotations
on the input, we can look at the output and trace back annotated values to
their source (assuming evaluation does not conjure up new annotated values
out of thin air). In Figure 11 we define the function csoΣ for finding all colored
subobjects of a LinksW term. This function allows us to find the annotations in
the program and state that we do not invent any during evaluation. Thus, if
we start with a distinctly annotated database and no annotated constants, we
can then guarantee that all annotated values in the result of evaluation come,
without modification, directly from the database. Theorem 2 formally states
this intuition of evaluation not inventing annotated values.

We first show a helpful lemma: the colored subobjects of a term substituted
into an evaluation context E [M ] can be obtained by considering the evaluation
context E and term M separately, instead. We extend csoΣ(−) to operate on
evaluation contexts in the obvious way.
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csoΣ(V a) = {V a} ∪ csoΣ(V )
csoΣ(c) = ∅
csoΣ([]) = ∅
csoΣ([M]) = csoΣ(M)
csoΣ(M ++N) = csoΣ(M) ∪ csoΣ(N)
csoΣ((li = Mi)

n
i=1) =

⋃n
i=1 csoΣ(Mi)

csoΣ(M.l) = csoΣ(M)
csoΣ(fun f(xi|ni=1)M) = csoΣ(M)
csoΣ(M(Ni|ni=1)) = csoΣ(M) ∪

⋃n
i=1 csoΣ(Ni)

csoΣ(varx = M ;N) = csoΣ(M) ∪ csoΣ(N)
csoΣ(if (L)M elseN) = csoΣ(L) ∪ csoΣ(M) ∪ csoΣ(N)
csoΣ(queryM) = csoΣ(M)
csoΣ(tablen) = csoΣ(Σ(n))
csoΣ(empty(M)) = csoΣ(M)
csoΣ(for (x <-M)N) = csoΣ(M) ∪ csoΣ(N)
csoΣ(for (x <--M)N) = csoΣ(M) ∪ csoΣ(N)

Figure 11: Colored subobjects in LinksW expressions.

Lemma 1. Given evaluation context E and term M , we have:

csoΣ(E [M ]) = csoΣ(E) ∪ csoΣ(M)

Proof. Proof by induction on the structure of the evaluation context. In the
case for E = [] we take the colored subobjects of a hole to be the empty set. The
other cases are straightforward.

Theorem 2 (Correctness of where-provenance). Let M and N be LinksW terms,
and let Σ be a context that provides annotated table rows. We have:

Σ,M −→ Σ, N ⇒ csoΣ(N) ⊆ csoΣ(M)

Proof. Proof by induction on the derivation of the evaluation relation −→. We
show some representative cases here, the full proof is in Appendix B.1.

• Case for (x <- [])M −→ []: csoΣ([]) = ∅ ⊆ csoΣ(for (x <- [])M)

• Case for (x <- [V ])M −→M [x := V ]:

csoΣ(M [x := V ]) ⊆ csoΣ(M) ∪ csoΣ(V )

= csoΣ(for (x <- [V ])M)

• Case for (x <-V ++W )M −→ (for (x <-V )M) ++ (for (x <-W )M):

csoΣ(for (x <-V ++W )M) = csoΣ(V ++W ) ∪ csoΣ(M)

= csoΣ(V ) ∪ csoΣ(W ) ∪ csoΣ(M)

= csoΣ((for (x <-V )M) ++ (for (x <-W )M))

• Case M −→M ′ ⇒ E [M ] −→ E [M ′] (evaluation step inside a context):

csoΣ(E [M ′]) = csoΣ(E) ∪ csoΣ(M ′) Lemma 1

⊆ csoΣ(E) ∪ csoΣ(M) IH

= csoΣ(E [M ]) Lemma 1
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Lin(A) = (data : A, prov : [(String, Int)])

LJOK = O

LJA -> BK = LJAK -> LJBK
LJ(li : Ai)

n
i=1K = (li : LJAiK)

n
i=1

LJ[A]K = [Lin(LJAK)]
LJtable(R)K = LJ[(R)]K

Figure 12: Lineage type translation

Lineage
Γ `M : [A] A :: QType

Γ ` lineage {M} : LJ[A]K

Figure 13: Additional typing rule for LinksL

4.2. Lineage

LinksL adds the keyword lineage to Links. Like the keyword query, it is followed
by a block of code that will be translated into SQL and executed on the database.
The query keyword only affects where and how the evaluation takes place. The
result is the same as if database tables were lists in memory. The lineage keyword
also triggers translation of the following code block into SQL. However, the
query is rewritten to not only compute the result, but every row of the result is
annotated with its lineage. The syntax is extended as follows:

L,M,N ::= · · · | lineage{M}

The expression lineage {M} is similar to query {M}, in that M must be an
expression that can be executed on the database (that is, terminating and side-
effect free; this is checked by Links’s effect type system just as for query {M}). If
M has type [A] (which must be an appropriate query result type) then the type
of the result of lineage {M} will be LJ[A]K, where LJ−K is a type translation that
adjusts the types of collections [A] to allow for lineage, as shown in Figures 12
and 13.

A lineage block evaluates in one step to its result, as can be seen in Figure 14.
The result is determined by a second evaluation relation that is only used “inside”
lineage blocks: −→L. The language which −→L operates on is LinksL, except
that list values are replaced by a variant of lists, L̂, where every list element is
annotated with a set of colors:

V ::= · · · | L̂
L̂ ::= [] | [V ]a | L̂ ++ L̂

M ::= · · · |M∪b
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Σ̂, annotate(M) −→∗L Σ̂, L̂

Σ, lineageM −→ Σ, a2d(L̂)

annotate([]) = []

annotate([V ]) = [annotate(V )]∅

annotate(V ++W ) = annotate(V ) ++ annotate(W )

a2d([]) = []

a2d([V ]
{a1,...,an}) = [(data = a2d(V ), prov = [a1, . . . , an])]

a2d(V ++W ) = a2d(V ) ++ a2d(W )

Figure 14: LinksL semantics.

Note how the set of annotations a is on the singleton list constructor, not the
actual element value as you might expect. We use annotations to track lineage,
which describes why the value, or row, is in the result. Lineage is not concerned
with what the value actually is.

We represent lineage as a list of rows in the database and identify rows by
their table name and row number. Every occurrence of the list type constructor
in the type of a lineage query result is replaced by a list of records of data and
its provenance. For example, if a query block has type [Bool], the result of the
same code in a lineage block has type [(data: Bool, prov: [(String, Int)])].

There are two functions for going from LinksL values to annotated values used
inside lineage blocks, and back. The first function is annotate, which recursively
annotates LinksL lists with empty lineage annotations. We assume an extension
of this function to non-list values and arbitrary LinksL terms in the obvious way.
Only rows in database tables will have nonempty lineage annotations, provided by
an extended context Σ̂. The second function is a2d , which recursively transforms
annotated lists into plain data LinksL lists. Nonlist values are traversed in the
obvious way. Every annotated list element will be transformed into a record
with data and prov fields. The prov field will hold the lineage annotations, a set of
colors, as a list. Here we assume that colors are LinksL values. In practice they
will be pairs of table name and row number; in theory we could use anything
and define one more function to go from color to LinksL value.

Evaluation inside lineage blocks is almost the same as evaluation outside.
A lineage block is similar to a query block in that it can contain only pure,
nonrecursive functions, and no database updates. We do not support empty

inside lineage blocks, because it can lead to nonmonotonic queries. Figure 15
shows the evaluation rules. The major differences from regular evaluation are
in the treatment of for comprehensions and the new syntax M∪b. A table
comprehension takes the table values from an annotated signature Σ̂, which
maps tables to lists with lineage annotations. A for comprehension over a
singleton list adds the singleton’s annotation to all of the elements in the output
list. For this use alone we introduce the new type of expression M∪b. It takes a
term and a set of annotations, evaluates the term to a list value, and adds the
annotations. This is not syntax intended to be used by the programmer.
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Σ̂, []∪b −→L Σ̂, []

Σ̂, ([V ]
a)∪b −→L Σ̂, [V ]

a∪b

Σ̂, (V ++W )∪b −→L Σ̂, V ∪b ++W∪b

Σ̂, (fun f(xi|ni=0)M)(Vi|ni=0) −→L Σ̂,M [xi := Vi]
n
i=0

Σ̂, varx = V ;M −→L Σ̂,M [x := V ]

Σ̂, for (x <- [])M −→L Σ̂, []

Σ̂, for (x <- [V ]
a)M −→L Σ̂, (M [x := V ])∪a

Σ̂, for (x <-V ++W )M −→L Σ̂, (for (x <-V )M) ++ for (x <-W )M

Σ̂, for (x <-- table t)M −→L Σ̂, for (x <- Σ̂(t))M

Σ̂, query(V ) −→L Σ̂, V

Σ̂, if(true)M elseN −→L Σ̂,M

Σ̂, if(false)M elseN −→L Σ̂, N

Σ̂, (li = Vi)
n
i=1.lk −→L Σ̂, Vk

E ::= · · · | E∪b

Figure 15: Propagation of lineage annotations.

Lineage of a query result tells us which elements of the input were responsible
for each element of the output to exist. If we run the same query again, but
on only that part of the input that was mentioned in the lineage annotations,
we should get the same output. Nonmonotonic queries, that is queries that use
aggregations, emptiness tests, or set difference, cause issues here: For example
consider the query that selects everything from table a if table b is empty. Every
row in the result would be annotated with a corresponding row in a. One would
also need to record somehow the fact that b was empty. We could annotate whole
tables in addition to individual rows, but this would complicate the annotation
model. This is the approach taken in the work on dependency provenance [8]
which is similar to lineage but extends to nonmonotonic queries. For this work,
we chose to only consider monotonic queries.

In order to state the lineage correctness property formally, we need three
auxiliary definitions from Figure 16. We only show the most relevant cases here,
but extend both functions to the entire language in the obvious way. The full
definitions can be found in Appendix B.2. The function ‖ · ‖ collects all lineage
annotations mentioned in a value and is extended to LinksL terms. The function
·|b restricts values, in particular list elements, to those annotated with a subset
of annotations b. We extend this to LinksL terms in the obvious way and to
annotated contexts such that tables mentioned in a restricted context Σ̂|b do
not contain rows which are not in b. Note that this function always preserves
list literals and values originating in the surrounding program because those are
annotated with empty lineage. Finally we have the recursive sublist relation v.
For example [(a = [2])] v [(a = [1]), (a = [2, 3])].

Suppose a monotonic LinksL query q evaluates, inside a lineage block, to an
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‖[M]
a‖ = a ∪ ‖M‖

‖[]‖ = ∅
‖M ++N‖ = ‖M‖ ∪ ‖N‖

‖M∪b‖ = b ∪ ‖M‖

‖table t‖ = ‖Σ̂(t)‖
‖for (x <-M)N‖ = ‖M‖ ∪ ‖N‖

[M]
a|b =

{
[M |b]a if a ⊆ b

[] otherwise

[]|b = []

(M ++N)|b = M |b ++N |b

M∪a|b =

{
(M |b)∪a if a ⊆ b

[] otherwise

table t|b = table t

(for (x <-M)N)|b = for (x <-M |b)N |b

V v V [] v L

V v V ′

[V ]
b v [V ′]b

V v V ′ W vW ′

V ++W v V ′ ++W ′

∀1 ≤ i ≤ n : li = l′i Vi v V ′i

(li = Vi)
n
i=1 v (l′i = V ′i )ni=1

Figure 16: Auxiliary definitions to collect lineage, restrict values, and find sublists.

annotated value v̂ in a context Σ̂. For every part p̂ of the value v̂ we can obtain
a smaller context Σ̂|‖p̂‖ by erasing all values from the original context Σ̂ which
are not mentioned in p̂. The lineage annotations are correct if every part p̂ v v̂
of the output v̂ is also a part of the output v̂′ obtained by evaluating the same
query q in the restricted context Σ̂|‖p̂‖.

Theorem 3. Given monotonic terms M and N , a context Σ̂, and a set of
annotations c, we have

Σ̂,M −→L Σ̂, N ⇒ M |c = N |c ∨ Σ̂|c,M |c −→L Σ̂|c, N |c

Proof. By induction on the evaluation relation −→L. We need the alternative
M |c = N |c because sometimes restriction can yield the empty list, on both
sides, in which case there is no evaluation step to be made. The two interesting
cases are the singleton for comprehension, which introduces M∪a, and adding
annotations to a singleton list, which eliminates M∪a.

Case Σ̂, for (x <- [V ]a)M −→L Σ̂,M [x := V ]∪a:
We have two cases, depending on c. If a ⊆ c then (for (x <- [V ]a)M)|c =
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for (x <- [V |c]a) (M |c) and therefore

Σ̂|c, for (x <- [V |c]a) (M |c) −→L Σ̂|c, (M |c[x := V |c])∪a

Furthermore, we have (M |c[x := V |c])∪a = ((M [x := V ])|c)∪a, which can be
shown by induction, but only states that ·|c is well-behaved with respect to
substitution, and ((M [x := V ])|c)∪a = (M [x := V ])∪a|c by definition of M∪a|c
in the case that a ⊆ c, and therefore

Σ̂|c, (for (x <- [V ]a)M)|c −→L Σ̂|c, (M [x := V ]∪a)|c

Otherwise a 6⊆ c and on the left hand side we have

(for (x <- [V ]a)M)|c = for (x <- ([V ]a)|c) (M |c) = for (x <- []) (M |c)

which evaluates to the empty list:

Σ̂|c, for (x <- []) (M |c) −→L Σ̂|c, []

Since (M [x := V ]∪a)|c = [] we can conclude that

Σ̂|c, (for (x <- [V ]a)M)|c −→L Σ̂|c, (M [x := V ]∪a)|c

Case Σ̂, ([V ]b)∪a −→L Σ̂, [V ]a∪b:
Depending on c we, again, have two cases. If a ⊆ c then ([V ]b)∪a|c =
([V ]b|c)∪a. Now, if b ⊆ c then [V ]b|c = [V |c]b and we have an evaluation
step Σ̂|c, ([V |c]b)∪a −→L Σ̂|c, [V |c]a∪b where the term on the right hand side
is equal to [V ]a∪b|c. Otherwise, b 6⊆ c and [V ]b|c = [] but on the right hand
side we also have [V ]a∪b|c = []. In other words, by restricting with c we get
the same value on both sides. We reach the same conclusion in the case that
a 6⊆ c.

Corollary 4. By repeated application of Theorem 3 we have

Σ̂,M −→j
L Σ̂, N ⇒ Σ̂|c,M |c −→k

L Σ̂|c, N |c

where j, k ∈ N and k ≤ j.

Lemma 5. Given a value v̂ and a subvalue p̂ v v̂ of that value, we have

p̂ v v̂|‖p̂‖

Proof. By induction on the subvalue relation v.

• Cases V v V and [] v V are trivially true.

• Case [V ]b v [V ′]b: We have [V ′]b|‖[V ]b‖ = [V ′]b|b∪‖V ‖ by definition,
and V ′|‖V ‖ w V by the induction hypothesis, and can therefore conclude

[V ]b v [V ′]b|‖[V ]b‖.

• The cases for list concatenation and records are similar.
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WJOK = O

WJA -> BK = WJAK -> WJBK
WJ(li : Ai)

n
i=1K = (li : WJAiK)ni=1

WJ[A]K = [WJAK]
WJProv(A)K = (data : WJAK, prov : (String,String, Int))

WJtable(R)K = (table(�R�), () -> [WJ(R)K])

Figure 17: Type translation for LinksW

Theorem 6 (Correctness of lineage). Let q be a monotonic query with ‖q‖ = ∅
and let Σ̂ be a context, such that q evaluates to v̂ in Σ̂: Σ̂, q −→∗L Σ̂, v̂. Then for

every sublist p̂ v v̂ we can evaluate q in a restricted context Σ̂|‖p̂‖ to obtain a
value v̂′ and p̂ will be a sublist of v̂′.

∀p̂ v v̂ : Σ̂|‖p̂‖, q −→∗L Σ̂|‖p̂‖, v̂′ ∧ p̂ v v̂′

Proof. Using Corollary 4 of Theorem 3 we have

Σ̂|‖p̂‖, q|‖p̂‖ −→∗L Σ̂|‖p̂‖, v̂|‖p̂‖

for any p̂ and, because of Lemma 5, v̂|‖p̂‖ w p̂ so set

v̂′ = v̂|‖p̂‖

Since q has no annotations on its own, it is not affected by restriction: q|‖p̂‖ = q
and we can conclude that

Σ̂|‖p̂‖, q −→∗L Σ̂|‖p̂‖, v̂′ ∧ p̂ v v̂′

5. Provenance translations

In the previous section, we have presented two extensions of Links: LinksW,
which supports where-provenance in queries, and LinksL, which supports lineage
in queries. Here, we show that both extensions can be implemented by a
type-preserving source-to-source translation to plain Links.

5.1. Where-Provenance

We define a type-directed translation from LinksW to Links based on the
semantics presented in the previous section. The syntactic translation of types
WJ−K is shown in Figure 17. We write WJΓK for the obvious extension of the
type translation to contexts. The implementation extends the Links parser and
type checker, and desugars the LinksW AST to a Links AST after type checking,
reusing the backend mostly unchanged. The expression translation function is
also written WJ−K and is shown in Figure 18.
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WJcK = c

WJxK = x

WJ(li = Mi)
n
i=1K = (li = WJMiK)ni=1

WJN.lK = WJNK.l
WJfun(xi|ni=0) {M}K = fun(xi|ni=0) {WJMK}

WJM(Ni|ni=0)K = WJMK(WJNiK|ni=0)

WJvar x = M ;NK = var x = WJMK;WJNK
WJquery {M}K = query {WJMK}

WJ[]K = []

WJ[M ]K = [WJMK]
WJM ++ NK = WJMK ++ WJNK

WJif (L) {M} else {N}K = if (WJLK) {WJMK} else {WJNK}
WJempty (M)K = empty (WJMK)

WJfor (x <- L) MK = for (x <- WJLK) WJMK
WJwhere(M) NK = where(WJMK) WJNK

WJfor (x <-- L) MK = for (x <- WJLK.2()) WJMK
WJdata MK = WJMK.data

WJprov MK = WJMK.prov

WJinsert L values MK = insert WJLK.1 values WJMK
WJupdate (x <- L) where M set NK = update (x <- WJLK.1) where WJMK set WJNK

WJdelete (x <- L) where MK = delete (x <- WJLK.1) where WJMK

WJtable n with(R)where SK = (table n with (R), fun(){for(x <-- table n with (R))[(R.nxS)]})

· .nx · = ·
(R, l : O) .nx · = (R .nx ·), l = x.l

(R, l : O) .nx (S, l prov default) = (R .nx S), l = (data = x.l, prov = (n, ld, x.oid))
(R, l : O) .nx (S, l prov M) = (R .nx S), l = (data = x.l, prov = WJMK(x))

Figure 18: Translation of LinksW to Links, and auxiliary operation R .nx S

Values of type Prov(O) are represented at runtime as ordinary Links records
with type (data: O, prov: (String, String, Int)). Thus, the keywords data and prov

translate to projections to the respective fields.
We translate table declarations to pairs. The first component is a simple table

declaration where all columns have their primitive underlying non-provenance
type. We will use the underlying table declaration for insert, update, and delete
operations. The second component is essentially a delayed query that calculates
where-provenance for the entire table. (The fact that it is delayed is important
here, because it means that it can be inlined and simplified later, rather than
loaded into memory.) We compute provenance for each record by iterating over
the table. For every record of the input table, we construct a new record with
the same fields as the table. For every column with provenance, the field’s
value is a record with data and prov fields. The data field is just the value. The
translation of table references also uses an auxiliary operation R .nx S which,
given a row type R, a table name n, a variable x and a provenance specification
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S, constructs a record in which each field contains data from x along with the
specified provenance (if any). We wrap the iteration in an anonymous function to
delay execution: otherwise, the provenance-annotated table would be constructed
in memory when the table reference is first evaluated. We will eventually apply
this function in a query, and the Links query normalizer will inline the provenance
annotations and normalize them along with the rest of the query.

We translate table comprehensions to comprehensions over the second com-
ponent of a translated table declaration. Since that component is a function, we
have to apply it to a (unit) argument.

For example, recall the example query q1’’’ from Section 2, Figure 4. The
table declaration translates as follows:

var agencies = (table ”Agencies”
with (name: String, based in: String, phone: String),

fun () { for (t <-- table ”Agencies”
with (name: String, based in: String, phone: String))

[(name = t.name, based in = t.based in,
phone = (data = t.phone, prov = (”Agencies”, ”phone”, t.oid)))] })

The translation of the externalTours table reference is similar, but simpler, since
it has no prov annotations. The query translates to

query {
for (a <-- agencies.2())
for (e <-- externalTours.2())
where (a.name == e.name && e.type == ”boat”)

[(name = e.name,
phone = a.phone.data, p phone = a.phone.prov)]

}

Moreover, after inlining the adjusted definitions of agencies and externalTours and
normalizing, the provenance computations in the delayed query agencies.2 are
also inlined, resulting in the following SQL query. In this query, the table and
column part of the where-provenance are in fact static, and the generated SQL
query reflects this by using constants in the select clause. We see no trace of
function application, or nested record projections in the guise of data and prov.

select
e.name as name,
a.phone as phone,
’agencies’ as p phone 1,
’phone’ as p phone 2,
a.oid as p phone 3

from
Agencies as a,
ExternalTours as e

where
a.name = e.name and e.type = ’boat’

The type-preservation correctness property of the where-provenance transla-
tion is that it preserves well-formedness. We first need

Lemma 7. Let R be a row and S be a provenance specification. Then

• WJ(�R�)K = (R).
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• �(R . S)� = (R).

The type-preservation property for the translation is stated as follows and
proved in Appendix B.3:

Theorem 8.

1. For every LinksW context Γ, term M , and type A, if Γ `LinksW M : A then
WJΓK `Links WJMK : WJAK.

2. For every LinksW context Γ, provenance specification S, row R and subrow
R′ such that R′ .nx S is defined, if Γ ` S : ProvSpec(R) then WJΓK, x:(R) `
(R′ .nx S) : WJ(R′ . S)K.

We have shown that annotation-propagation in LinksW is color-propagating
(Theorem 2) and that the translation to Links is type-preserving (Theorem 8).
We have not, however, shown that the translation correctly implements the
semantics. This is intuitively clear, but a formal proof is nontrivial because a
single step in LinksW can translate to multiple steps in Links, involving terms
that have no LinksW counterpart.

5.2. Lineage

We define a typed translation from LinksL to Links. The translation has two
parts: an outer translation called doubling (D) and an inner part called lineage
translation (L). The former is used for translating ordinary LinksL code while the
latter is used to translate query code inside a lineage keyword. The syntactic
translation of LinksL types for the doubling translation is shown in Figure 12,
and the translation used for the lineage translation is the L translation shown
earlier. We write DJΓK and LJΓK for the obvious extensions of these translations
to contexts.

The translation of LinksL expressions to Links is shown in Figures 20–22.
Following the type translation, term translation operates in two modes: D and
L. We translate ordinary Links programs using the translation DJ−K. When we
reach a lineage block, we switch to using the LJ−K translation. LJ[M ]K provides
initial lineage for list literals. Their lineage is simply empty. Table comprehension
is the most interesting case. We translate a table iteration for (x <-- L) M to a
nested list comprehension. The outer comprehension binds y to the results of the
lineage-computing view of L. The inner comprehension binds a fresh variable
z, iterating over LJMK—the original comprehension body M transformed using
L. The original comprehension body M is defined in terms of x, which is not
bound in the transformed comprehension. We therefore replace every occurrence
of x in LJeK by y.data. In the body of the nested comprehension we thus have y,
referring to the table row annotated with lineage, and z, referring to the result of
the original comprehension’s body, also annotated with lineage. As the result of
our transformed comprehension, we return the plain data part of z as our data,
and the combined lineage annotations of y and z as our provenance. (Handling
where-clauses is straightforward, as shown in Figure 21.)

One subtlety here is that lineage blocks need not be closed, and so may refer
to variables that were defined (and will be bound to values at runtime) outside
of the lineage block. This could cause problems: for example, if we bind x to
a collection [1, 2, 3] outside a lineage block and refer to it in a comprehension
inside such a block, then uses of x will expect the collection elements to be
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DJOK = O

DJA -> BK = (DJAK -> DJBK,LJAK -> LJBK)
DJ(li : Ai)

n
i=1K = (li : DJAiK)ni=1

DJ[A]K = [DJAK]

DJtable(R)K = (table(R), () -> LJ[(R)]K)

Figure 19: Doubling translation

records such as (data = 1, prov = L) rather than plain numbers. Therefore, such
variables need to be adjusted so that they will have appropriate structure to
be used within a lineage block. The auxiliary type-indexed function d2lJAK in
Figure 22 accomplishes this by mapping a value of type DJAK to one of type
LJAK. We define L∗J−K as a function that applies LJ−K to its argument and
substitutes all free variables x : A with d2lJAK(x).

The DJ−K translation also has to account for functions that are defined
outside lineage blocks but may be called either outside or inside a lineage block.
To support this, the case for functions in the DJ−K translation creates a pair,
whose first component is the recursive DJ−K translation of the function, and
whose second component uses the L∗J−K translation to create a version of the
function callable from within a lineage block. (We use L∗J−K because functions
also need not be closed.) Function calls outside lineage blocks are translated to
project out the first component; function calls inside such blocks are translated to
project out the second component (this is actually accomplished via the A -> B
case of d2l.)

Finally, notice that the DJ−K translation maps table types and table references
to pairs. This is similar to the WJ−K translation, so we do not explain it in
further detail; the main difference is that we just use the oid field to assign
default provenance to all rows.

For example, if we wrap the query from Figure 1 in a lineage block it will be
rewritten to this:

for (y a <- agencies.2())
for (z a <- for (y e <- externalTours.2())

for (z e <- [(data = (name = y a.data.name, phone = y a.data.phone),
prov = [])])

where (y a.data.name == y e.data.name && y e.data.type == ”boat”)
[(data = z e.data, prov = y e.prov ++ z e.prov)])

[(data = z a.data, prov = y a.prov ++ z a.prov)]

Once agencies and externalTours are inlined, Links’s built-in normalization algo-
rithm simplifies this query to:

for (y a <- table ”Agencies” with ...)
for (y e <- table ”ExternalTours” with ...)
where (y a.data.name == y e.data.name && y e.data.type == ”boat”)

[(data = (name = y a.data.name,phone = y a.data.phone),
prov = [(”Agencies”, y a.oid), (”ExternalTours”,y e.oid)])]

Before considering the main type-preservation result, we state some auxiliary
lemmas with corresponding proofs in Appendix B.4:
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DJcK = c

DJxK = x

DJ(li = Mi)
n
i=1K = (li = DJMiK)ni=1

DJN.lK = DJNK.l
DJfun(xi|ni=1) {M}K = (fun(xi|ni=1) {DJMK},L∗Jfun(xi|ni=1) {M}K)

DJM(Ni|ni=1)K = DJMK.1(DJNiKni=1)

DJvar x = M ;NK = var x = DJMK;DJNK
DJ[]K = []

DJ[M ]K = [DJMK]

DJM ++ NK = DJMK ++ DJNK
DJif (L) {M} else {N}K = if (DJLK) {DJMK} else {DJNK}

DJquery {M}K = query {DJMK}
DJempty (M)K = empty (DJMK)

DJfor (x <- L) MK = for (x <- DJLK) DJMK
DJwhere(M) NK = where(DJMK) DJNK

DJfor (x <-- L) MK = for (x <- DJLK.1) DJMK
DJinsert L values MK = insert DJLK.1 values DJMK

DJupdate (x <- L) where M set DJNK = update (x <- DJLK.1) where DJMK set NK
DJdelete (x <- L) where MK = delete (x <- DJLK.1) where DJMK

DJlineage {M}K = query {L∗JMK}

DJtable n with (R)K = (table n with (R), fun(){LJtable n with (R)K})

Figure 20: Translation of LinksL to Links: outer translation

Lemma 9. 1. If A :: QType then DJAK = DJLJAKK.
2. If Γ `M : DJAK then Γ ` d2l(M) : LJAK.

The type-preservation property for the translation from LinksL to Links is
stated as follows:

Theorem 10. Let M be given such that Γ `LinksL M : A. Then:

1. LJΓK `Links LJMK : LJAK
2. DJΓK `Links L∗JMK : LJAK
3. DJΓK `Links DJMK : DJAK

Proof. The proof of the first part is by induction on the structure of typing deriva-
tions. The interesting cases are for the List, ForList and ForTable cases,
where lineage annotations are created or propagated. The detailed derivations
are given in Appendix B.5.

For the second part, suppose Γ ` M : A. Then by part 1 we know LJΓK `
LJMK : LJAK. Clearly, for each xi : Ai in Γ we have DJΓK ` xi : DJAiK, so
it follows that DJΓK ` d2l(xi) : LJAiK for each i by Lemma 9(2). Using the
(standard) substitution lemma for Links typing, we can conclude DJΓK ` L∗JMK :
LJAK.
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LJcK = c

LJxK = x

LJ(li = Mi)
n
i=1K = (li = LJMiK)ni=1

LJN.lK = LJNK.l
LJfun(xi|ni=1) {M}K = (fun(xi|ni=1) {LJMK})

LJM(Ni|ni=1)K = LJMK(LJNiK|ni=1)

LJvar x = M ;NK = var x = LJMK;LJNK
LJ[]K = []

LJ[M ]K = [(data = LJMK, prov = [])]

LJM ++ NK = LJMK ++ LJNK
LJif (L) {M} else {N}K = if (LJLK) {LJMK} else {LJNK}

LJquery {M}K = query {LJMK}
LJempty (M)K = empty (LJMK)

LJfor (x <- L) MK = for (y <- LJLK)
for (z <- LJMK[x 7→ y.data])

[(data = z.data, prov = y.prov ++ z.prov)]

LJwhere(M) NK = where(LJMK) (LJNK)
LJfor (x <-- L) MK = for (y <- LJLK)

for (z <- LJMK[x 7→ y.data])
[(data = z.data, prov = y.prov ++ z.prov)]

LJlineage {M}K = query {LJMK}

LJtable n with (R)K = for(x <-- table n with (R))[(data = x, prov = [(n, x.oid)])]

Figure 21: Translation of LinksL to Links: inner translation

Finally, for the third part, again the proof is by induction on the structure
of the derivation of Γ `M : A. Most cases are straightforward; we show a few
representative cases for (single-argument) functions and the lineage keyword,
illustrating the need for duplicating code in the type translation for functions
and the use of L∗J−K. The cases for updates and table references are similar to
those for LinksW, but simpler because the types of the fields do not change in
the translation from LinksL to Links. We illustrate the case for translation of
functions, since it is one of the subtler cases; the cases for function application
and the lineage keyword are given in the appendix. If the derivation is of the
form:

Fun
Γ, x : A `M : B

Γ ` fun (x){M} : A -> B

then by induction we have DJΓK, x : DJAK ` DJMK : DJBK and by part 2 we
know that DJΓK ` L∗Jfun (x){M}K : LJ(A) -> BK. We can proceed as follows:

DJΓK, x : DJAK ` DJMK : DJBK by IH
DJΓK ` fun (x){DJMK} : DJAK -> DJBK by rule
DJΓK ` L∗Jfun (x){M}K : LJAK -> LJBK by part 2
DJΓK ` (fun (x){DJMK},L∗Jfun (x){M}K) : DJA -> BK by rule
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L∗JMK = LJMK[xi 7→ d2lJAiK(xi)|ni=1]

where x1 : A1, . . . , xn : An are the free variables of M

d2lJAK : DJAK -> LJAK
d2lJOK(x) = x

d2lJA -> BK(f) = f.2

d2lJ(l1 : A1, . . . , ln : An)K(x) = (l1 : d2lJA1K(x.l1), . . . , ln : d2lJAnK(x.ln))

d2lJ[A]K(y) = for(x <- y)[(data = d2lJAK(x), prov = [])]

d2lJtable(R)K(t) = t.2()

Figure 22: Translation of LinksL to Links: term translation

where the final step relies on the fact that DJA -> BK = (DJAK -> DJBK,LJAK ->
LJBK).

As with the where-provenance translation, we have proven the correctness
of lineage annotation propagation (Theorem 6) and type-preservation of the
translation (Theorem 10). The latter is a partial sanity check, but no proof, that
this translation faithfully implements the semantics.

6. Experimental Evaluation

We implemented the two variants of Links with language-integrated prove-
nance, LinksW and LinksL, featuring our extensions for where-provenance and
lineage, respectively. In this section we compare them against plain Links on a
number of queries to determine their overhead. We also compare both variants
against Perm, a database-integrated provenance system.

Both provenance variants of Links build on its query shredding capabilities
as described by Cheney et al. [11]. They used queries against a simple test
database schema (see Figure 23) that models an organization with departments,
employees and external contacts. We adapt some of their benchmarks to return
where-provenance and lineage and compare against the same queries without
provenance.

Unlike Cheney et al. [11] our database does not include an additional id field,
instead we use PostgreSQL’s OIDs, which are used for identification of rows in
where-provenance and lineage. We populate the databases at varying sizes using
randomly generated data in the same way Cheney et al. [11] describe it: “We
vary the number of departments in the organization from 4 to 4096 (by powers
of 2). Each department has on average 100 employees and each employee has
0–2 tasks.” The largest database, with 4096 departments, is 142 MB on disk
when exported by pg dump to a SQL file (excluding OIDs). We create additional
indices on tasks(employee), tasks(task), employees(dept), and contacts(dept).

All tests were performed on an otherwise idle desktop system with a 3.2 GHz
quad-core CPU, 8 GB RAM, and a 500 GB HDD. The system ran Linux (kernel
4.5.0) and we used PostgreSQL 9.4.2 as the database engine. Links and its variants
LinksW and LinksL are interpreters written in OCaml, which were compiled to
native code using OCaml 4.02.3. The exact versions of LinksW and LinksL used
for this set of benchmarks can be downloaded from https://www.inf.ed.ac.
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uk/research/isdd/admin/package?download=188 and https://www.inf.ed.

ac.uk/research/isdd/admin/package?download=189 respectively.

6.1. Where-provenance

To be usable in practice, where-provenance should not have unreasonable
runtime overhead. We compare queries without any where-provenance against
queries that calculate where-provenance on some of the result and queries that
calculate full where-provenance wherever possible. This should give us an idea
of the overhead of where-provenance on typical queries, which are somewhere in
between full and no provenance.

The nature of where-provenance suggests two hypotheses: First, we expect
the asymptotic cost of where-provenance-annotated queries to be the same as
that of regular queries. Second, since every single piece of data is annotated with
a triple, we expect the runtime of a fully where-provenance-annotated query to
be at most four times the runtime of an unannotated query just for handling
more data.

We only benchmark default where-provenance, that is table name, column
name, and the database-generated OID for row identification. External prove-
nance is computed by user-defined database-executable functions and can thus
be arbitrarily expensive.

We use the queries with nested results from Cheney et al. [11] and use
them unchanged for comparison with the two variants with varying amounts of
where-provenance.

For full where-provenance we change the table declarations to add provenance
to every field, except the OID. The full declarations can be found in Figure C.33.
This changes the types, so we have to adapt the queries and some of the helper
functions used inside the queries, see Figure C.35. Figure 24 shows the benchmark
queries with full provenance. See Appendix C for the full code, including table
declarations and helper functions. Note that for example query Q2 maps the data

keyword over the employees tasks before comparing the tasks against ”abstract”.
Query Q6 returns the outliers in terms of salary and their tasks, concatenated
with the clients, who are assigned the fake task ”buy”. Since the fake task is
not a database value it cannot have where-provenance. LinksW type system
prevents us from pretending it does. Thus, the list of tasks has type [String], not
[Prov(String)].

The queries with some where-provenance are derived from the queries with
full provenance. Query Q1 drops provenance from the contacts’ fields. Q2 returns
data and provenance separately. It does not actually return less information,
it is just less type-safe. Q3 drops provenance from the employee. Q4 returns
the employees’ provenance only, and drops the actual data. Q5 does not return
provenance on the employees fields. Q6 drops provenance on the department.
(These queries make use of some auxiliary functions which are included in the
appendix.)
Setup. We have three LinksW programs, one for each level of where-provenance
annotations. For each database size, we drop all tables and load a dump from disk,
starting with 4096. We then run LinksW three times, once for each program in
order all, some, none. Each of the three programs performs and times its queries
5 times in a row and reports the median runtime in milliseconds. The programs
measure runtime using the LinksW built-in function serverTimeMilliseconds which
in turn uses OCaml’s Unix.gettimeofday.
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table departments with (oid: Int, name: String)
table employees with (oid: Int, dept: String, name: String, salary: Int)
table tasks with (oid: Int, employee: String, task: String)
table contacts with (oid: Int, dept: String, name: String, client: Bool)

Figure 23: Benchmark database schema, cf. Cheney et al. [11].

# Q1 : [(contacts: [(”client”: Prov(Bool), name: Prov(String))], ...
for (d <-- departments)

[(contacts = contactsOfDept(d),
employees = employeesOfDept(d),
name = d.name)]

# Q2 : [(d: Prov(String))]
for (d <- q1())
where (all(d.employees, fun (e) {

contains(map(fun (x) { data x }, e.tasks), ”abstract”) }))
[(d = d.name)]

# Q3 : [(b: [Prov(String)], e: Prov(String))]
for (e <-- employees)

[(b = tasksOfEmp(e), e = e.name)]

# Q4 : [(dpt:Prov(String), emps:[Prov(String)])]
for (d <-- departments)

[(dpt = (d.name),
emps = for (e <-- employees)

where ((data d.name) == (data e.dept))
[(e.name)])]

# Q5 : [(a: Prov(String), b: [(name: Prov(String), ...
for (t <-- tasks)

[(a = t.task, b = employeesByTask(t))]

# Q6 : [(d: Prov(String), p: [(name: Prov(String), tasks: [String])])]
for (x <- q1())

[(d = x.name,
p = get(outliers(x.employees),

fun (y) { map(fun (z) { data z }, y.tasks) }) ++

get(clients(x.contacts), fun (y) { [”buy”] }))]

Figure 24: “allprov” benchmark queries used in experiments
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Figure 25: Where-provenance query runtimes.

Query median runtime∗ in ms overall slowdown
allprov someprov noprov (geom mean)

Q1 6068 3653 1763 2.26
Q2 60 60 60 1.52
Q3 8100 8064 4497 1.88
Q4 1502 1214 573 2.8
Q5 6778 3457 2832 1.85
Q6 17874 18092 16716 1.22

Figure 26: Median runtimes for largest dataset (Q1 at 512 departments, Q5 at 1024 departments,
Q6 at 2048 departments, others at 4096 departments) and geometric means of overall slowdowns.
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Data. Figure 25 shows our experimental results. We have one plot for every
query, showing the database size on the x-axis and the median runtime over
five runs on the y-axis. Note that both axes are logarithmic. Measurements of
full where-provenance are in black circles, no provenance are yellow triangles,
some provenance is blue squares. Based on test runs we had to exclude some
results for queries at larger database sizes because the queries returned results
that were too large for Links to construct as in-memory values.

The graph for query Q2 looks a bit odd. This seems to be due to Q2 not
actually returning any data for some database sizes, because for some of the
(randomly generated) instances there just are no departments where all employees
have the task ”abstract”.

The table in Figure 26 lists all queries with their median runtimes with full,
some, and no provenance. The time reported is in milliseconds, for the largest
database instance that both variants of a query ran on. For most queries this is
4096; for Q1 it is 512, 1024 for Q5, and 2048 for Q6. Figure 26 also reports the
slowdown of full where-provenance versus no provenance as the geometric mean
across all database sizes, for each query. The slowdown ranges from 1.22 for
query Q6 up to 2.8 for query Q4. Note that query Q2 has the same runtime for
all variants at 4096 departments, but full provenance is slower for some database
sizes, so the overall slowdown is > 1.
Interpretation. The graphs suggest that the asymptotic cost of all three
variants is the same, confirming our hypothesis. This was expected, anything
else would have suggested a bug in our implementation.

The multiplicative overhead seems to be larger for queries that return more
data. Notably, for query Q2, which returns no data at all on some of our test
database instances, the overhead is hardly visible. The raw amount of data
returned for the full where-provenance queries is three to four times that of a
plain query. Most strings are short names and provenance adds two short strings
and a number for table, column, and row. The largest overhead is 2.8 for query
Q4, which exceeds our expectations due to just raw additional data needing to
be processed.

6.2. Lineage

We expect lineage to have different performance characteristics than where-
provenance. Unlike where-provenance, lineage is conceptually set valued. A
query with few actual results could have huge lineage, because lineage is combined
for equal data. In practice, due to Links using multiset semantics for queries,
the amount of lineage is bounded by the shape of the query. Thus, we expect
lineage queries to have the same asymptotic cost as queries without lineage.
However, the lineage translation still replaces single comprehensions by nested
comprehensions that combine lineage. We expect this to have a larger impact
on performance than where-provenance, where we only needed to trace more
data through a query.

Figure 27 lists the queries used in the lineage experiments. For lineage,
queries are wrapped in a lineage block. Our implementation does not currently
handle function calls in lineage blocks automatically, so in our experiments we
have manually written lineage-enabled versions of the functions employeesByTask

and tasksOfEmp, whose bodies are wrapped in a lineage block. We reuse some of
the queries from the where-provenance experiments, namely Q3, Q4, and Q5.
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typename Lin(a) = (data: a, prov: [(String, Int)]);

# AQ6 : [Lin((department: String, outliers: [Lin((name: String, ...
for (d <- for (d <-- departments)

[(employees = for (e <-- employees) where (d.name == e.dept)
[(name = e.name, salary = e.salary)],

name = d.name)])
[(department = d.name,

outliers = for (o <- d.employees) where (o.salary > 1000000 || o.salary < 1000) [o])]

# Q3 : [Lin((b: [Lin(String)]), e: String)]
for (e <-- employees) [(b = tasksOfEmp(e), e = e.name)]

# Q4 : [Lin((dpt: String, emps: [Lin(String)]))]
for (d <-- departments)

[(dpt = d.name,
emps = for (e <-- employees) where (d.name == e.dept) [e.name])]

# Q5 : [Lin((a: String, b: [Lin((name: String, salary: Int, ...
for (t <-- tasks) [(a = t.task, b = employeesByTask(t))]

# Q6N : [Lin((department: String, people:[Lin((name: String, ...
for (x <-- departments)

[(department = x.name,
people = (for (y <-- employees)

where (x.name == y.dept && (y.salary < 1000 || y.salary > 1000000))
[(name = y.name,

tasks = for (z <-- tasks) where (z.employee == y.name) [z.task])])
++ (for (y <-- contacts) where (x.name == y.dept && y.”client”)

[(name = y.dept, tasks = [”buy”])]))]

# Q7 : [Lin((department: String, employee: (name: String, ...
for (d <-- departments) for (e <-- employees)
where (d.name == e.dept && e.salary > 1000000 || e.salary < 1000)

[(employee = (name = e.name, salary = e.salary), department = d.name)]

# QC4 : [Lin((a: String, b: String, c: [Lin((doer: String, ...
for (x <-- employees) for (y <-- employees)
where (x.dept == y.dept && x.name <> y.name)

[(a = x.name, b = y.name,
c = (for (t <-- tasks) where (x.name == t.employee) [(doer = ”a”, task = t.task)])
++ (for (t <-- tasks) where (y.name == t.employee) [(doer = ”b”, task = t.task)]))]

# QF3 : [Lin((String, String))]
for (e1 <-- employees) for (e2 <-- employees)
where (e1.dept == e2.dept && e1.salary == e2.salary && e1.name <> e2.name)

[(e1.name, e2.name)]

# QF4 : [Lin(String)]
(for (t <-- tasks) where (t.task == ”abstract”) [t.employee]) ++

(for (e <-- employees) where (e.salary > 50000) [e.name])

Figure 27: Lineage queries used in experiments
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Figure 28: Lineage query runtimes.

Query median runtime in ms overall slowdown
lineage nolineage (geom mean)

AQ6 493 108 3.8
Q3 4234 969 3.76
Q4 1208 125 7.55
Q5 13662 11851 1.25
Q6N 15200 7872 2.38
Q7 16766 1283 4.17
QC4 13291 4021 1.53
QF3 22298 2412 6.71
QF4 682 73 6.49

Figure 29: Median runtimes at largest dataset (Q7 at 128 departments, QC4 at 16 departments,
QF3 at 512 departments, others at 1024 departments) and geometric means of overall slowdowns
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Queries AQ6, Q6N, and Q7 are inspired by query Q6, but not quite the same.
Queries QF3 and QF4 are two of the flat queries from Cheney et al. [11]. Query
QC4 computes pairs of employees in the same department and their tasks in a
“tagged union”. Again, these queries employ some helper functions which are
included in an appendix.

We use a similar experimental setup to the one for where-provenance. We
only use databases up to 1024 departments, because most of the queries are a lot
more expensive. Query QC4 has excessive runtime even for very small databases.
Query Q7 ran out of memory for larger databases. We excluded them from runs
on larger databases.
Data. Figure 28 shows our lineage experiment results. Again, we have one plot
for every query, showing the database size on the x-axis and the median runtime
over five runs on the y-axis. Both axes are logarithmic. Measurements with
lineage are in black circles, no lineage is shown as yellow triangles.

The table in Figure 29 lists queries and their median runtimes with and
without lineage. The time reported is in milliseconds, for the largest database
instance that both variants of a query ran on. For most queries this is 1024; for
Q7 it is 128, 16 for QC4, and 512 for QF3. The table also reports the slowdown
of lineage versus no lineage as the geometric mean over all database sizes. (We
exclude database size 4 for the mean slowdown in QF4 which reported taking 0
ms for no lineage queries which would make the geometric mean infinity.) The
performance penalty for using lineage ranges from query Q5 needing a quarter
more time to query Q4 being more than 7 times slower than its counterpart.
Interpretation. Due to Links multiset semantics, we do not expect lineage to
cause an asymptotic complexity increase. The experiments confirm this. Lineage
is still somewhat expensive to compute, with slowdowns ranging from 1.25 to
more than 7 times slower. Further investigation of the SQL queries generated by
shredding is needed.

6.3. Threats to validity

Our test databases are only moderately sized. However, our result sets are
relatively large. Query Q1 for example returns the whole database in a different
shape. Links’ runtime representation of values in general and database results
in particular has a large memory overhead. In practice, for large databases
we should avoid holding the whole result in memory. This should reduce the
overhead (in terms of memory) of provenance significantly. (It is not entirely
clear how to do this in the presence of nested results and thus query shredding.)
In general, it looks like the overhead of provenance is dependent on the amount
of data returned. It would be good to investigate this more thoroughly. Also, it
could be advantageous to represent provenance in a special way. In theory, we
could store the relation and column name in a more compact way, for example.

One of the envisioned main use cases of provenance is debugging. Typically,
a user would filter a query anyway to pin down a problem and thus only look at
a small number of results and thus also query less provenance. Our experiments
do not measure this scenario but instead compute provenance for all query
results eagerly. Thus, the slowdown factors we showed represent worst case
upper bounds that may not be experienced in common usage patterns.

Our measurements do not include program rewriting time. However, this time
is only dependent on the lexical size of the program and is thus fairly small and,
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most importantly, independent of the database size. Since Links is interpreted, it
does not really make sense to distinguish translation time from execution time,
but both the where-provenance translation and the lineage translation could
happen at compile time, leaving only slightly larger expressions to be normalized
at runtime. Across the queries above, the largest observed time spent rewriting
LinksW or LinksL to plain Links was 5 milliseconds with the arithmetic mean
coming to 0.5 milliseconds.

6.4. Comparison with Perm

In this section we compare LinksW and LinksL to Perm [23], as an instance
of a database-integrated provenance system. This is very much a comparison
between apples and oranges.

The subset of queries supported by both Links variants and Perm is limited.
Most of the queries above use nested results which are not supported by Perm.
Many common flat relational queries use aggregations which are not supported
by Links. Others do not have large or interesting provenance annotations, be it
where-provenance or lineage.

For this comparison we use a synthetic dataset. We create tables of integers
1, . . . , n for n = (10000, 100000, 1000000); a simple string representation of the
number; an English language cardinal like “one”, “two”, . . . ; and an English
language ordinal (“first”, “second”, . . . ).

i s cardinal ordinal

1 ”1” ”one” ”first”
2 ”2” ”two” ”second”
...
n ”n” ”en” ”nth”

We create 64 copies of these tables at each size n and call them i s c o n 1,
i s c o n 2, . . . . Their content is the same, but their OIDs are distinct. The
data loading scripts are 55 MB, 640 MB, and 7.8 GB on disk.

We use the same machine as before to run both databases and database
clients. We use Perm version 0.1.1, which is a fork of Postgres 8.3 which adds
support for provenance. We compiled from source, which required passing
-fno-aggressive-loop-optimizations to GCC 6.3.1 as it would otherwise miscompile.
This seems to be a known problem with Postgres 8.3, which Perm 0.1.1 is based
on. Links uses the current version of Postgres as its database backend, which is
Postgres 9.6.3.

In this set of benchmarks, we measure wall clock time of single runs. Links
queries execute the query and print the result to stdout which is ignored. Printing
uses Links’s native format with pretty printing (line breaks and indentation)
disabled. Perm queries are executed using psql with a “harness” like this:

\COPY (SQL query goes here) TO STDOUT WITH CSV

6.4.1. Where-provenance

We use a family of queries that join m = (16, 32, 64) of the tables described
above on their integer column and select the provenance-annotated cardinal
column for each of them. Thus, the where-provenance LinksW queries look like
this (table declarations are in Appendix C.1):
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Figure 30: Where-provenance times grouped by table size (n) and number of tables (m). Note
that wlinks and postgres queries are filtered, perm queries are not.

query {
for (t 1 <-- i s c o n 1) . . . for (t m <-- i s c o n m)
where (mod(t 1.i, 100) < 5 && t 1.i == t 2.i && . . . && t 1.i = t m.i)

[(c1 = t 1.cardinal, c2 = t 2.cardinal, . . ., cm = t m.cardinal)] }

Testing revealed that LinksW runs out of memory for the largest (n=1000000,m=64)
query. Rather than using smaller input databases, we filtered the result using
mod(t 1.i, 100) < 5 as an additional condition in the where clause.

Unfortunately, Perm’s where-provenance support is too restrictive and refuses
to execute an equivalent query with the following error message: “WHERE-CS
only supports conjunctive equality comparisons in WHERE clause.” Fortunately,
Perm has no problems computing the full result, so we used queries of the
following form, without filtering based on t 1.i % 100 < 5.

SELECT PROVENANCE ON CONTRIBUTION (WHERE)
t 1.cardinal AS c1, . . ., t m.cardinal AS cm

FROM i s c o n 1 AS t 1, . . ., i s c o n m AS t m
WHERE t 1.i = t 2.i AND . . . AND t 1.i = t m.i

We execute variants without where-provenance of both the LinksW and Perm
queries. For LinksW we keep the table declarations as they are, but use the
data keyword to project to just the data and rely on query normalization to not
compute provenance. We run a fifth set of queries against Postgres 9.6.3 which
are just like the plain Perm queries, but with filtering, like the LinksW queries.

Figure 30 shows query runtimes in seconds grouped by size of tables (n) and
number of tables joined (m). Keep in mind that the Perm variants return a lot
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more data. In the table below we show result size in megabytes at n = 1000000
for LinksW with where-provenance annotations, Perm with annotations, and
Postgres without annotations. We measure the size simply as byte count of the
printed result. Examples of the output can be found in Appendix C.1.

m=16 m=32 m=64

LinksW 89.2 MB 179.1 MB 359.1 MB
Perm 1589.3 MB 3187.5 MB 6384.0 MB
Postgres 37.2 MB 74.3 MB 148.6 MB

Looking at the runtime difference between the Perm queries without where-
provenance and the plain Postgres queries we see that the result size does not
have a great impact on runtime. In general, the numbers between systems
are hard to compare, not just because of result size. We only consider one
family of highly synthetic queries and the experimental setup is not necessarily
a realistic reflection of any real-world use. However, we do observe some trends:
The runtime difference between processing 10x data (going down one row in
the graph) is larger than the difference between systems, by far. Doubling the
number of tables considered also dominates difference between systems. We
conclude that the overhead of where-provenance in both Perm and LinksW is
moderate and the systems are roughly comparable.

6.4.2. Lineage

We use the same data as before and similar queries to compare LinksL to
Perm Influence Contribution Semantics (PI-CS). Lineage and PI-CS are not
equivalent in general [21], but for the queries we use here the annotations contain,
more or less, the same information.

We use a family of queries similar to those for where-provenance. Again
we join m = (16, 32, 64) tables, but this time we return only the first table’s
integer and English cardinal columns, and their lineage. The number of joins
is particularly interesting here because it increases the size of the provenance
metadata without affecting the actual result size.

We run variants with lineage and PI-CS metadata, as well as just the plain
queries. Finally, we run the plain version of the Perm query against the Postgres
database used by LinksL. This time all variants, including Perm, are filtered to
5% of the result size, as seen below. The LinksL query and example output can
be found in Appendix C.1.

SELECT PROVENANCE t 1.i, t 1.cardinal
FROM i s c o n 1 AS t 1, . . ., i s c o n m AS t m
WHERE t 1.i % 100 < 5 AND t 1.i = t 2.i AND . . . AND t (m− 1).i = t m.i

Instead of a list of annotations per result row, Perm produces wider tables,
adding columns to identify join partners. Table rows are identified by the whole
width, so for m = 64 joined tables we have two columns for the actual result and
64 ∗ 4 columns of provenance metadata. The example result below is transposed.
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Figure 31: Lineage times grouped by relation size (n) and width (m). All queries are filtered
to return only 5% of results.

i 1 2 . . .
cardinal one two . . .

prov public i s c o 1000 1 i 1 2 . . .
prov public i s c o 1000 1 s 1 2 . . .

prov public i s c o 1000 1 cardinal one two . . .
prov public i s c o 1000 1 ordinal first second . . .

...

We show query runtimes grouped by size of the tables (n) and number of
tables joined (m) in Figure 31. We omitted the largest LinksL query (n=1000000,
m=64); it ran for 33745 seconds, which would have distorted the graph too much.
This query just barely did not run out of memory, causing severe GC thrashing
and leaving little memory for the database server and disk caches.

These timings are whole program execution and so include pre- and post-
processing steps. LinksL is translated to plain Links, as described in Section 5.2,
which took less than 1 millisecond for all queries. Query normalization for the
lineage queries takes around 9 milliseconds for m=16, 41 milliseconds for m=32,
and 194 milliseconds for m=64. Postprocessing times (with data already in
memory) range from almost 10 seconds for the lineage query at n=1000000,
m=64 to 11 milliseconds for n=10000, m=16.

The queries executed by Postgres are on average a bit faster than the
same queries executed by Perm. We did not investigate this further, a simple
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explanation would be that Postgres 9.6.3 is just a bit faster than Postgres 8.3
which is the version Perm was forked from.

Below we show result size at n = 1000000 for plain queries, and lineage
queries at m = 16 and m = 32. We measure the size simply as byte count of
the printed result. In some ways, the data is a worst case for Perm, because
the width of the result is so much smaller than the width of the annotations.
We can see this clearly in the result size table above. Despite that, the query
execution time overhead of lineage annotations is remarkably low in Perm.

system plain lineage (m=16) lineage (m=32)

LinksL 3.1 MB 38.5 MB 73.7 MB
Perm 2.7 MB 89.4 MB 176.2 MB

Perm considerably outperforms LinksL when it comes to lineage computation.
Their performance on plain queries is similar, which comes at a bit of a surprise.
We expected LinksL to be a worse database client than the native psql client,
even for flat queries. This can partly be explained by experiment setup. We had
database clients and servers run on the same machine to avoid network issues.
However, this reduces the amount of memory available for caching, especially
since LinksL uses so much memory to nearly run out on some queries. This
means a lot of time is spent by the database system waiting for disk seeks
and postprocessing time is low by comparison. Except for the largest queries,
postprocessing by LinksL is typically well below 1 second.

We take away three things: (1) A different experimental setup could alleviate
memory pressure and cache behavior and bring out processing times. (2) We
could change Links to emit queries that use Perm’s built-in provenance features
when possible. (3) Most interesting would be to look at different ways to rewrite
LinksL queries. Currently, we use Links’s nested query capabilities which allow a
fairly naive translation. Perm exploits the fact that lineage is bounded by the
structure of the query, adding columns instead of nested data. Perhaps we could
do something similar in LinksL.

7. Related Work

Buneman et al. [5] gave the first definition of where-provenance in the context
of a semistructured data model. The DBNotes system of Bhagwat et al. [3]
supported where-provenance via SQL query extensions. DBNotes provides
several kinds of where-provenance in conjunctive SQL queries, implemented
by translating SQL queries to one or more provenance-propagating queries.
Buneman et al. [6] proposed a where-provenance model for nested relational
calculus queries and updates, and proved expressiveness results. They observed
that where-provenance could be implemented by translating and normalizing
queries but did not implement this idea; our approach to where-provenance in
LinksW is directly inspired by that idea and is (to the best of our knowledge)
the first implementation of it. One important difference is that we explicitly
manage where-provenance via the Prov type, and allow the programmer to
decide whether to track provenance for some, all or no fields. Our approach also
allows inspecting and comparing the provenance annotations, which Buneman
et al. [6] did not allow; nevertheless, our type system prevents the programmer
from forging or unintentionally discarding provenance. On the other hand, our
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approach requires manual data and prov annotations because it distinguishes
between raw data and provenance-annotated data.

LinksL is inspired by prior work on lineage [16] and why-provenance [5]. There
have been several implementations of lineage and why-provenance. Cui and
Widom implemented lineage in a prototype data warehousing system called
WHIPS. The Trio system of Benjelloun et al. [2] also supported lineage and
used it for evaluating probabilistic queries; lineage was implemented by defining
customized versions of database operations via user-defined functions, which are
difficult for database systems to optimize. Glavic and Alonso [23] introduced the
Perm system, which translated ordinary queries to queries that compute their
own lineage; they handled a larger sublanguage of SQL than previous systems
such as Trio, and subsequently Glavic and Alonso [22] extended this approach
to handle queries with nested subqueries (e.g. SQL’s EXISTS, ALL or ANY
operations). They implemented these rewriting algorithms inside the database
system and showed performance improvements of up to 30 times relative to Trio.
In another line of work, Corcoran et al. [15] and Swamy et al. [37] developed
SELinks, a variant of Links with sophisticated support for security policies,
including a form of provenance tracking implemented using database extensions
and type-based coercions. Our approach instead shows that it is feasible to
perform this rewriting outside the database system and leverage the standard
SQL interface and underlying query optimization of relational databases.

Both LinksW and LinksL rely on the conservativity and query normalization
results that underlie Links’s implementation of language-integrated query, par-
ticularly Cooper’s work (2009) extending conservativity to queries involving
higher-order functions, and previous work by Cheney et al. [11] on “query shred-
ding”, that is, evaluating queries with nested results efficiently by translation
to equivalent flat queries. There are alternative solutions to this problem that
support larger subsets of SQL, such as grouping and aggregation, which are
not currently supported by Links. There are other approaches to nested data
or grouping and aggregation, such as Grust et al.’s loop-lifting ([27]) and more
recent work on query flattening [39] in the Database Supported Haskell (DSH)
library, or Suzuki et al.’s QueΛ [36], and it would be interesting to evaluate the
performance of these techniques on provenance queries, or to extend Links’s
query support to grouping and aggregation.

Other authors, starting with Green et al. [25], have proposed provenance
models based on annotations drawn from algebraic structures such as semirings.
While initially restricted to conjunctive queries, the semiring provenance model
has subsequently been extended to handle negation and aggregation operations [1].
Karvounarakis et al. [28] developed ProQL, an implementation of the semiring
model in a relational database via SQL query extensions. Glavic et al. [24]
present further details of the Perm approach described above, show that semiring
provenance can be extracted from Perm’s provenance model, and also describe
a row-level form of where-provenance. It is not yet clear how to support other
instances of the semiring model via query rewriting in Links.

LinksW and LinksL are currently separate extensions, and cannot be used
simultaneously, so another natural area for investigation is supporting multiple
provenance models at the same time. We are currently investigating this; one
possible difficulty may be the need to combine multiple type translations. We
intend to explore this further (and consider alternative models). Cheney et al.
[9] presented a general form of provenance for nested relational calculus based
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on execution traces, and showed how such traces can be used to provide “slices”
that explain specific results. While this model appears to generalize all of the
aforementioned approaches, it appears nontrivial to implement by translation to
relational queries, because it is not obvious how to represent the traces in this
approach in a relational data model. (Giorgidze et al. [20] show how to support
nonrecursive algebraic data types in queries, but the trace datatype is recursive.)
This would be a challenging area for future work.

Our translation for lineage is similar in some respects to the doubling trans-
lation used in Cheney et al. [10] to compile a simplified form of Links to a
F#-like core language. Both translations introduce space overhead and overhead
for normal function calls due to pair projections. Developing a more efficient
alternative translation (perhaps in combination with a more efficient and more
complete compilation strategy) is an interesting topic for future work.

As in most work on provenance, we have focused on explaining questionable
results in terms of the source data, and we assume that the query itself is correct
and not the source of the problem. It would also be interesting to consider a
different problem where the query (or other parts of the program) might have
errors, and the question is to identify which parts of the query or program
could have contributed to erroneous data. This would require a combination of
program slicing [32] and query slicing [9] techniques.

8. Conclusions

This article makes several contributions regarding integrating provenance
management with programming languages. First, we present language extensions
to the Links web programming language that accommodate where-provenance
(LinksW) and lineage (LinksL), give their semantics, and establish basic provenance
correctness properties. Second, we show how to implement both extensions by
translation back to plain Links, relying on Links’s existing sophisticated support
for language-integrated query, normalization and nested queries.

Our approach shows that it is feasible to implement provenance by rewriting
queries outside the database system, so that a standard database management
system can be used. By building on the well-developed theory of query nor-
malization that underlies Links’s approach to language-integrated query, our
translations remain relatively simple, while still being translated to SQL queries
that are executed efficiently on the database. To the best of our knowledge, our
approach is the first efficient implementation of provenance for nested query
results or for queries that can employ first-class functions; at any rate, SQL
does not provide either feature. Our results show that provenance for database
queries can be implemented efficiently and safely at the language-level. This
is a promising first step towards systematic programming language support for
provenance.

Links is a research prototype language, but the underlying ideas of our ap-
proach could be applied to other systems that support comprehension-based
language-integrated query, such as F# and Database Supported Haskell. There
are a number of possible next steps, including extending Links’s language-
integrated query capabilities to support richer queries and more forms of prove-
nance. Another area for future work is establishing the correctness of the
provenance translations. We believe it would be better to develop a general
translation that abstracts the two given in this article, and prove its correctness
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once and for all. Finally, we have placed some restrictions on the correctness
properties for LinksW and LinksL: specifically, we have not considered the im-
pact of updates on provenance correctness, and we have restricted attention to
monotonic queries for LinksL. Lifting restrictions in a satisfying way is also an
intriguing direction for future work.
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Appendix A. Notation

Notation Sec. Meaning
Σ,M −→ Σ′,M ′ 3 Database state Σ and expression M evaluate

in one step to Σ′ and M ′

Σ,M −→∗ Σ′,M ′ 3 Reflexive, transitive closure of −→
A :: QType 3 Type A is allowed as a query result type

R :: BaseRow 3 Row R contains only fields of base types
Γ `M : A 3 In type context Γ, expression M has type A

Γ ` S : ProvSpec(R) 4.1 In type context Γ, specification S is a valid
provenance specification matching R

�A� 4.1 Erasure of A, replacing occurrences of Prov(O)
with O

R . S 4.1 Augment row R with provenance specification
S

csoΣ(M) 4.1 Set of colored subobjects of expression M , with
respect to database state Σ

LJAK 4.2 Lineage type translation of type A

Σ̂,M −→L Σ̂′,M ′ 4.2 Lineage-enabled evaluation
‖M‖ 4.2 Collection of all lineage annotations from M
M |b 4.2 Restriction of M to collection elements whose

lineage is contained in b
V v V ′ 4.2 V is obtainable from V ′ by deleting some list

elements
WJAK 5.1 Where-provenance type translation
WJMK 5.1 Where-provenance expression translation
R .nx S 5.1 A row expression constructing initial prove-

nance from a row of type R with table name n
and variable x according to provenance specifi-
cation S

DJAK 5.2 Doubling translation of type A
DJMK 5.2 Doubling translation of expression M
LJMK 5.2 Lineage translation of query expression M
L∗JMK 5.2 Closing lineage translation of M

d2lJAK(M) 5.2 Mapping from doubling translation to lineage
translation

Appendix B. Proofs

Appendix B.1. Proof of Theorem 2

The statement of the theorem was:

Σ,M −→ Σ, N ⇒ csoΣ(N) ⊆ csoΣ(M)

where M and N are LinksW terms, and Σ is a context that provides annotated
table rows.

Proof. The proof is by induction on −→.
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• Case (fun f(xi)M)(Vi) −→M [f := fun f(xi)M,xi := Vi]:

csoΣ(M [f := fun f(xi)M,xi := Vi]) ⊆ csoΣ(M) ∪ csoΣ(fun f(xi)M) ∪
n⋃

i=0

csoΣ(Vi)

= csoΣ(fun f(xi)M) ∪
n⋃

i=0

csoΣ(Vi)

= csoΣ ((fun f(xi)M)(Vi))

• Case varx = V ;M −→M [x := V ]:

csoΣ(M [x := V ]) ⊆ csoΣ(M) ∪ csoΣ(V ) = csoΣ(varx = V ;M)

• Case (li = Vi)
n
i=1.lk −→ Vk where 1 ≤ k ≤ n:

csoΣ(Vk) ⊆
n⋃

i=1

csoΣ(Vi)

= csoΣ((li = Vi)
n
i=1)

= csoΣ((li = Vi)
n
i=1.lk)

• Case if (true)M elseN −→M :

csoΣ(M) ⊆ csoΣ(M) ∪ csoΣ(N)

= csoΣ(if (true)M elseN)

• Case if (false)M elseN −→ N :

csoΣ(N) ⊆ csoΣ(M) ∪ csoΣ(N)

= csoΣ(if (false)M elseN)

• Case queryM −→M : csoΣ(M) = csoΣ(queryM).

• Case tablen −→ Σ(n): csoΣ(Σ(n) = csoΣ(tablen).

• Case empty([]) −→ true:

csoΣ(true) = ∅ = csoΣ(empty([]))

• Case empty(V ) −→ false, where V 6= []:

csoΣ(false) = ∅ ⊆ csoΣ(V ) = csoΣ(empty(V ))

• Case for (x <- [])M −→ []:

csoΣ([]) = ∅ ⊆ csoΣ(for (x <- [])M)
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• Case for (x <- [V ])M −→M [x := V ]:

csoΣ(M [x := V ]) ⊆ csoΣ(M) ∪ csoΣ(V )

= csoΣ(for (x <- [V ])M)

• Case for (x <-V ++W )M −→ (for (x <-V )M) ++ (for (x <-W )M):

csoΣ(for (x <-V ++W )M) = csoΣ(V ++W ) ∪ csoΣ(M)

= csoΣ(V ) ∪ csoΣ(W ) ∪ csoΣ(M)

= csoΣ((for (x <-V )M) ++ (for (x <-W )M))

• Case for (x <--V )M −→ for (x <-V )M :

csoΣ(for (x <-V )M) = csoΣ(V ) ∪ csoΣ(M)

= csoΣ(for (x <--V )M)

• Case M −→M ′ ⇒ E [M ] −→ E [M ′] (evaluation step inside a context):

csoΣ(E [M ′]) = csoΣ(E) ∪ csoΣ(M ′) Lemma 1

⊆ csoΣ(E) ∪ csoΣ(M) IH

= csoΣ(E [M ]) Lemma 1

Appendix B.2. Full definitions of auxiliary functions for lineage annotation ex-
traction and restriction

The interesting cases can be found in Figure 16.
We extend ‖ · ‖, the lineage annotation collection function, by recursively

collecting annotations.

‖[M]a‖ = a ∪ ‖M‖
‖[]‖ = ∅

‖M ++N‖ = ‖M‖ ∪ ‖N‖
‖M∪b‖ = b ∪ ‖M‖
‖table t‖ = ‖Σ̂(t)‖

‖varx = M ;N‖ = ‖M‖ ∪ ‖N‖
‖c‖ = c

‖(li = Mi)
n
i=1‖ =

n⋃
i=1

‖Mi‖

‖M.l‖ = ‖M‖
‖fun f(xi|ni=1)M‖ = fun f(xi|ni=1) ‖M‖
‖if (L)M elseN‖ = ‖L‖ ∪ ‖M‖ ∪ ‖N‖

‖queryM‖ = ‖M‖
‖for (x <-M)N‖ = ‖M‖ ∪ ‖N‖
‖for (x <--M)N‖ = ‖M‖ ∪ ‖N‖
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We extend ·|b, the erasure function, by recursively erasing.

[M]a|b =

{
[M |b]a if a ⊆ b

[] otherwise

[]|b = []

(M ++N)|b = M |b ++N |b

M∪a|b =

{
(M |b)∪a if a ⊆ b

[] otherwise

table t|b = table t

(varx = M ;N)|b = varx = M |b;N |b
c|b = c

(li = Mi)
n
i=1|b = (li = Mi|b)ni=1

M.l|b = (M |b).l
(fun f(xi|ni=1)M)|b = fun f(xi|ni=1) (M |b)
(if (L)M elseN)|b = if (L|b)M |b elseN |b

(queryM)|b = query (M |b)
(for (x <-M)N)|b = for (x <-M |b)N |b

(for (x <--M)N)|b = for (x <--M |b)N |b

Appendix B.3. Proof of Theorem 8

Recall the statement of the theorem:

1. For every LinksW context Γ, term M , and type A, if Γ `LinksW M : A then
WJΓK `Links WJMK : WJAK.

2. For every LinksW context Γ, provenance specification S, row R and subrow
R′ such that R′ .nx S is defined, if Γ ` S : ProvSpec(R) then WJΓK, x:(R) `
(R′ .nx S) : WJ(R′ . S)K.

Proof. Proof is by induction on the structure of LinksW derivations. Most cases
for the first part are immediate; we show some representative examples.

• If the derivation is of the form:

Data
Γ `M : Prov(A)

Γ ` data M : A

then by induction we have WJΓK `WJMK : WJProv(A)K, and can conclude:

WJΓK `WJMK : (data : WJAK, prov : (String,String, Int))

WJΓK `WJMK.data : WJAK

• If the derivation is of the form:

Data
Γ `M : Prov(A)

Γ ` prov M : (String,String, Int)
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then by induction we have WJΓK `WJMK : WJProv(A)K, and can conclude:

WJΓK `WJMK : (data : WJAK, prov : (String,String, Int))

WJΓK `WJMK.prov : (String,String, Int)

• If the derivation is of the form:

Table
R :: BaseRow Γ ` S : ProvSpec(R)

Γ ` table n with (R) where S : table(R . S)

Then since ‖R . S‖ = R (Lemma 7) we can conclude:

WJΓK ` table n with (R) : table(‖R . S‖)

and by the second induction hypothesis,

R :: BaseRow

WJΓK ` table n with (R) : table(R)

WJΓK, x:(R) ` (R .nx S) : WJ(R . S)K
WJΓK, x:(R) ` [(R .nx S)] : [WJ(R . S)K]

WJΓK ` for(x <-- table n with (R))[(R .nx S)] : [WJ(R . S)K]

WJΓK ` fun(){for(x <-- table n with (R))[(R .nx S)]} : () -> [WJ(R . S)K]

• If the derivation is of the form

For-Table
Γ ` L : table(R) Γ, x : (R) `M : [B]

Γ ` for (x <-- L) M : [B]

then by induction we have WJΓK `WJLK : (table(‖R‖), () -> [WJ(R)K]),
so we can proceed as follows:

WJΓK `WJLK.2 : () -> [WJ(R)K]

WJΓK `WJLK.2() : [WJ(R)K] WJΓK, x : WJ(R)K `WJMK : [WJBK]

WJΓK ` for (x <- WJLK.2()) WJMK : [WJBK]

• If the derivation is of the form:

Delete
Γ ` L : table(R) Γ, x : (‖R‖) `M : Bool

Γ ` delete (x <-- L) where M : ()

then by induction we have WJΓK ` WJLK : WJtable(R)K and WJΓK, x :
WJ(‖R‖)K `WJMK : Bool.

WJΓK `WJLK : (table(‖R‖), () -> [(R)])

WJΓK `WJLK.1 : table(‖R‖) WJΓK, x : (‖R‖) `WJMK : Bool

WJΓK ` delete (x <-- WJLK.1) where WJMK : ()

For the second part, we proceed by induction on the structure of the derivation
of Γ ` S : ProvSpec(R). We show one representative case, for derivations of the
form

Γ ` S : ProvSpec(R) Γ `M : (R) -> (String,String, Int)

Γ ` S, l prov M : ProvSpec(R)
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In this case, by induction we have that WJΓK, x:(R) ` (R′ .nx S) : WJ(R′ . S)K
holds for any subrow R′ of R, and by the first induction hypothesis we also know
that WJΓK `WJMK : WJ(R)K -> (String,String, Int).

Suppose R′, l : O .nx S, l prov M . Then we can conclude that WJΓK, x:(R) `
(R′, l : Prov(O) .nx S, l prov M) : WJ(R′, l : O . S, l prov O)K because (R′, l :
O .nx S, l prov M) = (R′ .nx S), l = (data = x.l,prov = WJMK(x)) and R′, l :
O . S, l prov O = (R′ . S), l : Prov(O).

Appendix B.4. Proof of Lemma 9

Recall the statement of the lemma:

1. If A :: QType then DJAK = DJLJAKK.
2. If Γ `M : DJAK then Γ ` d2l(M) : LJAK.

Proof. For part 1, the proof is by induction on the derivation of A :: QType, and
is straightforward since both D and L are the identity on types formed only
from base types, records or collection types.

For the second part, the proof is by induction on the structure of A but each
case is straightforward. We show the interesting cases for function types and
collection types:

• If A = B1 -> B2 then we proceed as follows:

Γ `M : (DJB1K -> DJB2K,LJB1K -> LJB2K)
Γ `M.2 : LJB1K -> LJB2K

which suffices since LJB1 -> B2K = LJB1K -> LJB2K.

• If A = [B] then we proceed as follows:

Γ `M : [DJBK] assumption
Γ, x : DJBK ` x : DJBK by rule
Γ, x : DJBK ` d2lJBK(x) : LJBK by IH
Γ, x : DJBK ` [] : [(String, Int)] by rule
Γ, x : DJBK ` (data = d2lJBK(x),prov = []) : Lin(LJBK) by rule
Γ, x : DJBK ` [(data = d2lJBK(x),prov = [])] : [Lin(LJBK)] by rule
Γ ` for (x <- M) [(data = d2lJBK(x),prov = [])] : [Lin(LJBK)] by rule

Appendix B.5. Proof of Theorem 10

Recall the statement of the theorem:

1. LJΓK `Links LJMK : LJAK
2. DJΓK `Links L∗JMK : LJAK
3. DJΓK `Links DJMK : DJAK

Proof. For the first part, we show the details of the cases for singleton lists and
list comprehensions. Table comprehensions are similar.
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• If the derivation is of the form:

List
Γ `M : A

Γ ` [M ] : [A]

then we proceed as follows:

LJΓK ` LJMK : LJAK by IH
LJΓK ` [] : [(String, Int)] by rule
LJΓK ` (data = LJMK,prov = []) : Lin(LJAK) by rule
LJΓK ` [(data = LJMK,prov = [])] : [Lin(LJAK)] by rule

which suffices since LJ[A]K = [LinLJAK] = [(data : LJAK,prov : [(String, Int)])].

• If the derivation is of the form:

For-List
Γ ` L : [A] Γ, x : A `M : [B]

Γ ` for (x <- L) M : [B]

then we proceed as follows:

LJΓK ` LJLK : [Lin(LJAK)] by IH
LJΓK, x : LJAK ` LJMK : [Lin(LJBK)] by IH
LJΓK, y : Lin(LJAK) ` y.data : LJAK by rule
LJΓK, y : Lin(LJAK) ` LJMK[x 7→ y.data] : Lin(LJAK) by substitution
LJΓK, y : Lin(LJAK), z : Lin(LJBK) ` z.data : LJBK by rule
LJΓK, y : Lin(LJAK), z : Lin(LJBK) ` y.prov : [(String, Int)] by rule
LJΓK, y : Lin(LJAK), z : Lin(LJBK) ` z.prov : [(String, Int)] by rule
LJΓK, y : Lin(LJAK), z : Lin(LJBK) ` y.prov ++ z.prov : [(String, Int)] by rule
LJΓK, y : Lin(LJAK), z : Lin(LJBK) `

(data = z.data, prov = y.prov ++ z.prov) : Lin(LJBK) by rule
LJΓK, y : Lin(LJAK), z : Lin(LJBK) `

[(data = z.data, prov = y.prov ++ z.prov)] : [Lin(LJBK)] by rule
LJΓK, y : Lin(LJAK) `

for (z <- LJMK[x 7→ y.data])
[(data = z.data, prov = y.prov ++ z.prov)] : [Lin(LJBK)]

by rule

LJΓK ` for (y <- LJLK)
for (z <- LJMK[x 7→ y.data])

[(data = z.data, prov = y.prov ++ z.prov)] : [Lin(LJBK)]

by rule

Finally, for the third part, we show the interesting cases for functions, function
calls, and lineage.

• If the derivation is of the form:

Fun
Γ, x : A `M : B

Γ ` fun (x){M} : A -> B

then by induction we have DJΓK, x : DJAK ` DJMK : DJBK and by part 2
we know that DJΓK ` L∗Jfun (x){M}K : LJ(A) -> BK. We can proceed as
follows:
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DJΓK, x : DJAK ` DJMK : DJBK by IH
DJΓK ` fun (x){DJMK} : DJAK -> DJBK by rule
DJΓK ` L∗Jfun (x){M}K : LJAK -> LJBK by part 2
DJΓK ` (fun (x){DJMK},L∗Jfun (x){M}K) : DJA -> BK by rule

where the final step relies on the fact that DJA -> BK = (DJAK ->

DJBK,LJAK -> LJBK).

• If the derivation is of the form:

App
Γ `M : A -> B Γ ` N : A

Γ `M(N) : B

then we proceed as follows:

DJΓK ` DJMK : (DJAK -> DJBK,LJAK -> LJBK) by IH
DJΓK ` DJMK.1 : DJAK -> DJBK by rule
DJΓK ` DJNK : DJAK by IH
DJΓK ` DJMK.1(DJNK) : DJBK by rule

where in the first step we use the fact that DJA -> BK = (DJAK ->

DJBK,LJAK -> LJBK).

• If the derivation is of the form:

Lineage
Γ `M : [A] A :: QType

Γ ` lineage {M} : LJ[A]K

then by part (2) we know that DJΓK ` L∗JMK : LJ[A]K, so we proceed as
follows:

DJΓK ` L∗JMK : [LJAK] LJAK :: QType

DJΓK ` query {L∗JMK} : [LJAK]

which suffices since DJLJAKK = DJAK by Lemma 9(1).

Appendix C. Benchmark code

This appendix contains the full listings for the where-provenance and lineage
benchmarks. Figures C.32 and C.33 show the plain table declarations and
declarations with where-provenance, respectively. These tables also include
readonly and tablekeys annotations which were suppressed in the main body of
the article; the former indicates that a field is read-only and the latter lists the
subsets of the fields that uniquely determine the others.

Figure C.34 shows the helper functions used by the plain versions of the
queries, and Figure C.35 shows the variants of these functions adapted to work
with where-provenance. Some of the functions, such as any, need no changes at
all because they are polymorphic. Figure C.36 shows the versions of the queries
with some provenance (the someprov benchmarks).

Figures C.37 and C.38 show the plain queries without lineage annotations;
these also employ abbreviations from Figure C.34.
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var db = database ”links”;

var departments =

table ”departments”
with (oid: Int, name: String)
where oid readonly
tablekeys [[”name”],[”oid”]]
from db;

var employees =

table ”employees”
with (oid: Int, dept: String, name: String, salary : Int)
where oid readonly
tablekeys [[”name”],[”oid”]]
from db;

var tasks =

table ”tasks”
with (oid: Int, employee: String, task: String)
where oid readonly
tablekeys [[”oid”]]
from db;

var contacts =

table ”contacts”
with (oid: Int, dept: String, name: String, ”client”: Bool)
where oid readonly
tablekeys [[”name”], [”oid”]]
from db;

Figure C.32: Table declarations for lineage, nolin, and noprov queries.
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var departments =

table ”departments”
with (oid: Int, name: String)
where oid readonly, name prov default
tablekeys [[”name”]]
from db;

var employees =

table ”employees”
with (oid: Int, dept: String, name: String, salary : Int)
where oid readonly, dept prov default,

name prov default, salary prov default
tablekeys [[”name”]]
from db;

var tasks =

table ”tasks”
with (oid: Int, employee: String, task: String)
where oid readonly, employee prov default, task prov default
tablekeys [[”oid”]]
from db;

var contacts =

table ”contacts”
with (oid: Int, dept: String, name: String, ”client”: Bool)
where oid readonly, dept prov default,

name prov default, ”client” prov default
tablekeys [[”name”]]
from db;

Figure C.33: Table declarations for where-provenance queries (except noprov).
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sig tasksOfEmp: ((name:String| )) -> [String]
fun tasksOfEmp(e) {
for (t <-- tasks) where (t.employee == e.name) [t.task]
}

sig contactsOfDept: ((name:String| )) -> [(”client”:Bool,name:String)]
fun contactsOfDept(d) {
for (c <-- contacts)
where (d.name == c.dept)

[(”client” = c.”client”, name = c.name)]
}

sig employeesByTask: ((employee:String| )) -> [(name:String,salary:Int,tasks:[String])]
fun employeesByTask(t) {
for (e <-- employees)
for (d <-- departments)
where (e.name == t.employee && e.dept == d.name)

[(name = e.name, salary = e.salary, tasks = tasksOfEmp(e))]
}

sig employeesOfDept: ((name:String| )) -> [(name:String,salary:Int,tasks:[String])]
fun employeesOfDept(d) {
for (e <-- employees)
where (d.name == e.dept)

[(name = e.name, salary = e.salary, tasks = tasksOfEmp(e))]
}

sig any : ([a],(a) -a-> Bool) -a-> Bool
fun any(xs,p) { not(empty(for (x <- xs) where (p(x)) [()])) }

sig all : ([a],(a) -a-> Bool) -a-> Bool
fun all(xs, p) { not(any(xs, fun (x) { not(p(x)) })) }

sig contains: ([a], a) -> Bool
fun contains(xs, u) { any(xs, fun (x) { x == u }) }

fun isPoor(x) { x.salary < 1000 }
fun isRich(x) { x.salary > 1000000 }

sig get: ([(name:a::Any|b)], ((name:a::Any|b)) -c-> d::Any)
-c-> [(name:a::Any,tasks:d::Any)]

fun get(xs, f) {
for (x <- xs)

[(name = x.name, tasks = f(x))]
}

sig outliers: ([(salary:Int|a)]) -> [(salary:Int|a)]
fun outliers(xs) { filter(fun (x) { isRich(x) || isPoor(x) }, xs) }

sig clients: ([(”client”:Bool|a)]) -> [(”client”:Bool|a)]
fun clients(xs) { filter(fun (x) { x.”client” }, xs) }

Figure C.34: Helper functions noprov.
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# the original (allprov) Q1
fun q org() {
for (d <-- departments)

[(contacts = contactsOfDept(d),
employees = employeesOfDept(d),
name = d.name)]

}

sig tasksOfEmp: ((name:Prov(String)| )) -> [Prov(String)]
fun tasksOfEmp(e) {
for (t <-- tasks)
where ((data t.employee) == data e.name)

[t.task]
}

sig contactsOfDept: ((name:Prov(String)| )) -> [(”client”:Prov(Bool),name:Prov(String))]
fun contactsOfDept(d) {
for (c <-- contacts)
where ((data d.name) == data c.dept)

[(”client” = c.”client”, name = c.name)]
}

sig employeesByTask: ((employee:Prov(String)| ))
-> [(name:Prov(String),salary:Prov(Int),tasks:[Prov(String)])]

fun employeesByTask(t) {
for (e <-- employees)
for (d <-- departments)
where ((data e.name) == (data t.employee)

&& (data e.dept) == (data d.name))
[(name = e.name, salary = e.salary, tasks = tasksOfEmp(e))]

}

sig employeesOfDept: ((name:Prov(String)| ))
-> [(name:Prov(String),salary:Prov(Int),tasks:[Prov(String)])]

fun employeesOfDept(d) {
for (e <-- employees)
where ((data d.name) == data e.dept)

[(name = e.name, salary = e.salary, tasks = tasksOfEmp(e))]
}

fun get(xs, f) {
for (x <- xs) [(name = x.name, tasks = f(x))]
}

sig outliers: ([(salary:Prov(Int)|a)]) -> [(salary:Prov(Int)|a)]
fun outliers(xs) { filter(fun (x) { isRich(x) || isPoor(x) }, xs) }

sig clients: ([(”client”:Prov(Bool)|a)]) -> [(”client”:Prov(Bool)|a)]
fun clients(xs) { filter(fun (x) { data x.”client” }, xs) }

Figure C.35: Helper functions allprov, someprov (use data in some places).
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# Q1
sig q1 : () -> [(contacts: [(”client”: Bool, name: String)],

employees: [(name: Prov(String), salary: Prov(Int),
tasks: [Prov(String)])],

name: Prov(String))]
fun q1() { for (d <-- departments)

[(contacts = for (c <- contactsOfDept(d))
[(”client” = data c.”client”, name = data c.name)],

employees = employeesOfDept(d),
name = d.name)] }

# Q2
sig q2 : () -> [(d: String, p: (String, String, Int))]
fun q2() { for (d <- q org())

where (all(d.employees, fun (e) {
contains(map(fun (x) { data x }, e.tasks), ”abstract”)
}))

[(d = data d.name, p = prov d.name)] }

# Q3: employees with lists of tasks
sig q3 : () -> [(b: [Prov(String)], e: Prov(String))]
fun q3() { for (e <-- employees) [(b = tasksOfEmp(e), e = (e.name))] }

# Q4: departments with lists of employees
sig q4 : () -> [(dpt:Prov(String), emps:[(String, String, Int)])]
fun q4() { for (d <-- departments)

[(dpt = d.name, emps = for (e <-- employees)
where ((data d.name) == (data e.dept))
[prov e.name])] }

# Q5: Tasks with employees and departments
fun dropProv(l) { map(fun (x) { data x }, l) }

sig q5: () -> [(a: Prov(String), b: [(name: String, salary: Int, tasks: [String])])]
fun q5() { for (t <-- tasks)

[(a = t.task, b = for (x <- employeesByTask(t))
[(name = data x.name,

salary = data x.salary,
tasks = dropProv(x.tasks))])]

}

# Q6 Drop prov on department.
sig q6: () -> [(department: String, people: [(name: Prov(String), tasks: [String])])]
fun q6() { for (x <- q org())

[(department = data x.name,
people = get(outliers(x.employees),

fun (y) { map(fun (z) { data z }, y.tasks) }) ++

get(clients(x.contacts),
fun (y) { [”buy”] }))] }

Figure C.36: Queries someprov.
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# AQ6 : [(department: String, outliers: [(name: String, ...
for (d <- for (d <-- departments)

[(employees = for (e <-- employees)
where (d.name == e.dept)
[(name = e.name, salary = e.salary)],

name = d.name)])
[(department = d.name, outliers = for (o <- d.employees)

where (o.salary > 1000000 || o.salary < 1000)
[o])]

# Q3 : [(b: [String]), e: String)]
for (e <-- employees) [(b = tasksOfEmp(e), e = e.name)]

# Q4 : [(dpt: String, emps: [String]))]
for (d <-- departments)

[(dpt = d.name, emps = for (e <-- employees)
where (d.name == e.dept)
[(e.name)])]

# Q5 : [(a: String, b: [(name: String, salary: Int, ...
for (t <-- tasks) [(a = t.task, b = employeesByTask(t))]

# Q6N : [(department: String, people:[(name: String, ...
for (x <-- departments)

[(department = x.name,
people = (for (y <-- employees)

where (x.name == y.dept && (y.salary < 1000 || y.salary > 1000000))
[(name = y.name, tasks = for (z <-- tasks)

where (z.employee == y.name)
[z.task])]) ++

(for (y <-- contacts)
where (x.name == y.dept && y.”client”)
[(name = y.dept, tasks = [”buy”])]))]

Figure C.37: Nolineage queries, part 1
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# Q7 : [(department: String, employee: (name: String, ...
for (d <-- departments)
for (e <-- employees)
where (d.name == e.dept && e.salary > 1000000 || e.salary < 1000)

[(employee = (name = e.name, salary = e.salary), department = d.name)]

# QC4 : [(a: String, b: String, c: [(doer: String, ...
for (x <-- employees)
for (y <-- employees)
where (x.dept == y.dept && x.name <> y.name)

[(a = x.name, b = y.name,
c = (for (t <-- tasks)

where (x.name == t.employee)
[(doer = ”a”, task = t.task)]) ++

(for (t <-- tasks)
where (y.name == t.employee)

[(doer = ”b”, task = t.task)]))]

# QF3 : [(String, String)]
for (e1 <-- employees)
for (e2 <-- employees)
where (e1.dept == e2.dept && e1.salary == e2.salary && e1.name <> e2.name)

[(e1.name, e2.name)]

# QF4 : [String]
(for (t <-- tasks) where (t.task == ”abstract”)[t.employee])
++

(for (e <-- employees) where (e.salary > 50000) [e.name])

Figure C.38: Nolineage queries, part 2
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Appendix C.1. Perm comparison

Table declarations and where-provenance queries in LinksW.

var db = database ”links”;
var i s c o n 1 =

table ”i s c o n 1”
with (oid: Int, i: Int, s: String, cardinal: String, ordinal: String)
where cardinal prov default tablekeys [[”oid”], [”i”]] from db;

. . .
query {
for (t 1 <-- i s c o n 1) . . . for (t m <-- i s c o n m)
where (mod(t 1.i, 100) < 5 && t 1.i == t 2.i && . . . && t 1.i = t m.i)

[(c1 = t 1.cardinal, c2 = t 2.cardinal, . . ., cm = t m.cardinal)]
}

The LinksW results with where-provenance enabled look something like this
with pretty printing of provenance-annotated values disabled (we can see the
type Prov(a) really desugars to the tuple type (!data:a, !prov:(String, String, Int))):

[(c1=(!data=”one”,!prov=(”i s c o 10000 1”, ”cardinal”, 715924950)),
c2=(!data=”one”,!prov=(”i s c o 10000 2”, ”cardinal”, 715925958)), . . .), . . .]

Perm uses arrays to collect annotations of equal rows. In our query, all rows
are different, so these are all singleton arrays.

c1 annot c1 . . .

two hundred sixty-seven {public.i s c o 10000 1#cardinal#114040340} . . .
three hundred seventeen {public.i s c o 10000 1#cardinal#114040390} . . .
. . .

LinksL lineage queries and part of an example result.

lineage {
query {
for (t 1 <-- i s c o n 1) . . . for (t m <-- i s c o n m)
where (mod(t 1.i, 100) < 5 && t 1.i == t 2.i && . . . && t (m− 1).i == t m.i)

[(i=t 1.i, c = t 1.cardinal)]
}}

[(data=(c=”one”, i=1),
prov=[(row=715924950, table=”i s c o 1000 1”),

(row=715925958, table=”i s c o 1000 2”),
. . .]),

(data=(c=”two”, i=2),
prov=[(row=715924951, table=”i s c o 1000 1”), . . .]),
. . .]

The template for “equivalent” Perm queries is shown below. We use the
PROVENANCE keyword which enables Perm influence contribution semantics.

SELECT PROVENANCE t 1.i, t 1.cardinal
FROM i s c o n 1 AS t 1, . . ., i s c o n m AS t m
WHERE t 1.i % 100 < 5 AND t 1.i = t 2.i AND . . . AND t (m− 1).i = t m.i
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