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Abstract
Provenance is metadata about the where, the why, and the how of data. It is
evidence which can answer questions such as: Where exactly did this piece of
data come from? Why is this row in my result? How was it produced? Answers
to these questions are useful for judging the trustworthiness of data, and for
finding and correcting mistakes.

Most programs that use a database at all, already use one crude form of
provenance: they manually propagate row identifiers together with database
values, just in case they need to be updated later. More sophisticated forms
of provenance are exceedingly rare, because they are more difficult to imple-
ment manually. Tools to calculate data provenance systematically, only exist
as research prototypes. Even standard database systems are hard to set up, as
evidenced by the rise of hosted database services, so there is little suprise that
prototypes of provenance systems are not used much.

This dissertation shows how a programming language can provide support
for provenance. Based on language-integrated query technology, it can system-
atically rewrite queries to produce various forms of provenance. We describe
such query transformations for where-provenance and lineage, and discuss
how to enable programmers to define their own forms of provenance. Thanks
to query normalization the resulting queries still execute efficiently on main-
stream database systems. A programming language can help further by giving
provenance metadata precise types to ensure that it is handled appropriately.

Language-integrated queries make it easy to write programs that deal with
data, no special query language needed. Language-integrated provenance
makes it as easy to deal with data provenance, no special database needed.
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Lay Summary
Databases store the world’s data. They provide us with answers to increasingly
difficult questions. Sometimes the answers are wrong. Imagine a database of
train connections. We could ask for a train from here to there via somewhere
in particular, but only those that leave us enough time for a swift half at each
station we need to change at. As we leave the train at somewhere, half-way
between here and there, we realize that there is not actually enough time. The
next train leaves in three minutes. The database was wrong about the departure
time. To fix it, we need to figure out where in the database the departure time is
stored. Similarly, we could end up stranded somewhere, with no more trains
for the day, because the database thought a train existed, that does not. To fix
this, we need to figure out why the database produced this connection.

Data provenance describes where data came from, why it exists, who mod-
ified it, how it was produced in the first place, and so forth. It can be used to
answer the questions above, to find wrong data in databases, and fix it.

Unfortunately, most databases just give answers, not answers to questions
about their answers — provenance. This dissertation shows we do not actually
need the database to do anything special. When we write programs to retrieve
data from a database, we can have the programming language automatically
rewrite those programs to also compute data provenance. Essentially, instead
of asking for a result, we can modify our question slightly to ask for the result
togetherwith its provenance. Any database that can answer the original question
can also answer the modified question.

Hopefully, making access to data provenance independent of the database
will make it more easily available. Then we can hope that in the future, it is
easy to correct wrong data in a database, complicated computations will be
transparent, and data can be trusted because its provenance is easily verified.
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Chapter 1

Introduction

Provenance1 is “the origin or earliest known history of something” or “a record
of ownership of a work of art or an antique, used as a guide to authenticity
or quality” [Oxford Dictionary, 2018]. Data provenance is information about
the origin and derivation of data. Since informatics is the study of information
processing and provenance is information about information and how it was
processed, it is only natural that provenance crops up everywhere in informat-
ics, although frequently not under that name. For example, Make [Feldman,
1979], the build system, uses file modification time metadata and explicit de-
pendency information between files to provide incremental builds. This is a
crude approximation of what a build system really needs to know, namely the
provenance of a build result, to be able to rebuild if and only if any of the inputs
have changed. Programming languages usually report errors annotated with
information about where they occurred in the source file. The version control
system Git reads configuration parameters from so many potential sources that
they recently added an option to display where any value actually came from to
help with debugging configurations.2 All of these are matters of provenance.

Relational databases are the area of informatics where provenance itself has
received the most attention. Given a query and a database, data provenance
is additional information that explains the query result. It is important for
assessing the trustworthiness of data and can be useful for identifying and
correcting mistakes. Data and query languages are constrained enough to give

1From the French provenir (meaning ‘to come from’ or ‘to stem from’), from the Latin provenire,
from pro- (meaning ‘forth’) and venire (meaning ‘come’) [Oxford Dictionary, 2018].

2https://github.com/blog/2131-git-2-8-has-been-released accessed on 30
January 2018, Git commit dd0f567f1041a3caea7856b3efe20f8fb9b487b5.

1
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2 Chapter 1. Introduction

nth name

1 George Washington
... ...

44 Barack Obama
45 Donald Trump

(a) presidents

nth term date

1 1 4/30/1789
... ... ...

44 1 1/20/2009
44 2 1/21/2013
45 1 1/20/2017

(b) inaugurations

date time trips

1/21/2013 11 317k
1/20/2009 11 513k
1/20/2005 11 197k
1/20/2017 11 193k

... ... ...

(c) metro

Figure 1.1: A database of presidents, their inaugurations, and Metro ridership.

precise definitions for provenance and study its properties formally. Buneman,
Khanna, and Tan [2001] and other researches have identified several different
forms of provenance that answer different questions one might have about
query results. For example, input-provenance describes what inputs were used to
produce a result; where-provenance describes where each part of the result was
copied from in the input; why-provenance describes why a result exists at all.

Consider the database in Figure 1.1 which consists of a table of presidents
of the United States of America; the dates of their inaugurations [Coleman,
2017]; and hourly cumulative ridership data published by the Washington D.C.
Metro.3 Since inauguration attendance is not officially monitored, we might
want to use the cumulative trips at 11:00 on a particular day as a proxy for the
size of an inauguration. Given this data and interpretation, we can write a query
to return the names and inauguration dates of presidents whose inauguration
was at least as well-attended as Trump’s in 2017.

In a programming language with language-integrated queries, such as Links
[Cooper et al., 2007], this could look like the program in Figure 1.2. We first
define two helper functions. The first function, inaugDatesByPres, takes a
record p representing a president as its argument and uses a for-comprehension
to iterate over the inaugurations table, filtering inaugurations on column nth
to match the president p, and returning the inauguration dates as a list. The
second function, over193000, iterates over the dates obtained by calling the
first function and the Metro data to find dates where the cumulative ridership
(column trips) at 11:00 was greater than 193000 — the number of trips on

3https://twitter.com/wmata/status/822482330346487810 with the following
correction https://twitter.com/wmata/status/822487600158142464

https://twitter.com/wmata/status/822482330346487810
https://twitter.com/wmata/status/822487600158142464


3

fun inaugDatesByPres(p) {

for (i <- inaugurations) where (i.nth == p.nth) [i.date] }

fun over193000(p) {

for (date <- inaugDatesByPres(p)) for (m <- metro)

where (m.date == date && m.time == 11 && m.trips >= 193000)

[date] }

query { for (p <- presidents)

where (not(empty(over193000(p))))

[(president = p.name,

dates = over193000(p))] }

Figure 1.2: A Links program to find presidents and their inaugurations with
Metro ridership ≥ 193000.

Trump’s inauguration date. The query itself iterates over the presidents and re-
turns their names and inauguration dates with higher attendance than Trump’s,
if there are any. Given our source database, the result looks like Table 1.1.

president dates
... ...
Barack Obama [1/21/2013, 1/20/2009]
Donald Trump [1/20/2017]

Table 1.1: Presidents and their inaugurations with Metro ridership ≥ 193000.

UnlikeC#’sLinq [Meijer et al., 2006], which popularized language-integrated
query, Links supports efficient nested relational queries [Cheney et al., 2014c].
In the above example, the dates column of the result is itself a collection of
dates. The example also shows the use of functions to abstract over parts of a
query. Invisible to the user, Links generates two flat Sql queries, sends them to
the database for evaluation, and combines their results into the nested represen-
tation. Support for nested data and functional abstraction is important for the
rest of this work. They are also examples of features not found in mainstream
database systems that can be added by the programming language.4

4Arrays, even though standardized in Sql:1999, are not first-class citizens in Sql.
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president dates
... ...
Barack Obamap:name:44 [1/21/2013, 1/20/2009]p:44,i:65,i:66,m:1,m:2

Donald Trumpp:name:45 [1/20/2017]p:45,i:67,m:4

Table 1.2: The same result as Table 1.1, but annotated with president’s where-
provenance and dates’ lineage.

Now, imagine the result of the above query was displayed on a website and
a user complained about the last row reading “Donald Drumpf”. While slightly
amusing in a juvenile way, we would surely want to correct the mistake in the
database. There is a form of provenance called where-provenance that answers
exactly the question of where in a source database a particular cell of a query
result was copied from [Buneman et al., 2001]. (Admittedly, in this example the
where-provenance of the first column is not exactly complicated and would just
tell us to go look at the respective rows of the presidents table.) Another user
might be angry with us because they did not expect more than one result at all,
given that Sean Spicer said that Trump had “the largest audience ever to witness
an inauguration”5. Lineage [Cui et al., 2000] is a form of why-provenance
and it answers the question of why a result exists. For each row in a query
result, lineage gives evidence for its existence in the form of rows in the input
database. To give a satisfactory reply to our angry users, we need to investigate
the provenance of the result, in particular the where-provenance and lineage.

A provenance system could provide us with an annotated result, such as
the one in Table 1.2. Each name is annotated with a reference to a database cell,
where p stands for the presidents table. Thuswe can double check the presidents
table, name column, row 45; find that it does indeed say “Donald Trump”;
and suggest to our first unhappy user that they might want to disable their
browser extensions.6 Similarly, the inauguration dates in the second column
are annotated with rows that were visited while producing the result. Barack
Obama’s inaugurations are listed because he appears in row 44 of the presidents

5https://www.theguardian.com/us-news/2017/jan/22/trump-
inauguration-crowd-sean-spicers-claims-versus-the-evidence

6Yes, such browser extensions exist. People have even inadvertently copy-and-pasted pas-
sages from modified websites into other documents and published them. You may blame John
Oliver, or insufficient attention to provenance, as you wish.

https://www.theguardian.com/us-news/2017/jan/22/trump-inauguration-crowd-sean-spicers-claims-versus-the-evidence
https://www.theguardian.com/us-news/2017/jan/22/trump-inauguration-crowd-sean-spicers-claims-versus-the-evidence
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table, has two inaugurations listed in rows 65 and 66 of the inaugurations table,
which match rows 1 and 2 in the metro table with more than 193000 trips. We
can point our second unhappy user to this evidence. They might complain
about our methodology and sources, or compare the evidence against Spicer’s
and realize that his “alternative facts” are just lies.

A number of provenance systems (see Section 2.1.2 for an overview) have
been proposed that augment database systems with support for querying prove-
nance to produce annotated results such as the above. Unfortunately, to this date,
none of the proposed provenance extensions to the query language Sql have
been integrated into the standard, let alone been implemented by mainstream
database systems. Today, if a user wants to have their provenance questions
answered, they need to either use a research prototype of a provenance system
which they might well have to compile from source and patch themselves, use
some middleware system that intercepts and rewrites queries, or install plugins
to their existing database. There are users for whom the more invasive of these
options may not be available at all, because they cannot make changes to the
database they use. Other users may prefer a provenance solution that works
with a mainstream database, even one hosted as a service, without needing to
run additional software.

Furthermore, the question of how a client should interact with provenance
data has not been addressed at all in the literature. Many programmers use
libraries and frameworks for object-relational mapping (like Hibernate in Java
or ActiveRecord in Ruby) or language-integrated query (like Linq for C#) to
generate Sql queries for them. There are good reasons for using them, but they
also cause problems for provenance queries. None of these client abstractions
provide any support for provenance queries. To query provenance and debug
their data, a user would have to find out what queries are generated for them
and change them, leaving the comfort of their abstraction behind. Even when
provenance is used in the provenance system’s native language, how the user
interacts with it has so far been an afterthought. To achieve high performance,
systems like Perm return provenance annotations in a variable number of addi-
tional columns, which depends on the shape of the query. In the presence of
dynamic queries, it is difficult to expose this safely in a client library. Beyond
that, we might well want to treat provenance metadata differently from data
in the program. For instance, provenance can be used to encode secrecy levels
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[Corcoran et al., 2009]. If we build access control restrictions based on prove-
nance, we might want to use types to guarantee it is not forged or accidentally
misattributed.

In their contribution to the Festschrift in honor of Peter Buneman — “one of
the first to recognize the importance of data provenance” — Glavic, Miller, and
Alonso [2013] identify “four requirements for relational provenance systems”:

1. “Support for different types of provenance with sound semantics.”

Since different forms of provenance answer different questions, a prove-
nance system should support multiple forms of provenance to be able to
offer its user a more complete understanding of their data.

2. “Support for provenance generation for complex [queries].”

The richer the query language, the better. Ideally a system can generate
provenance for queries that use all of the language, however, there are
some natural limits to this. For example, if a query adds two numbers,
the result will just not have any meaningful where-provenance because
the value was not copied from the database. Unfortunately, provenance
systems sometimes impose additional restrictions.

3. “Support for complex queries over provenance information.”

Provenance is metadata, which means it is also still data itself, and a user
might well expect to be able to use the full power of their query language to
filter, manipulate, and analyze it.7 In some provenance systems, the data
models for provenance annotations and the underlying data are different
and thus the same language cannot be used to analyze them.

4. “Support for large databases.”

Provenance can be large — larger than the original database even. It
should not be necessary to compute and store provenance for the whole
database to get annotations on one query. This is particularly interesting in
combinationwith Requirement 3: if we use provenance in a filter condition,
for example, the system should avoid generating provenance for results
that will be filtered out.

7Provenance of provenance is an under-explored topic, so we are inclined to forgive systems
for not supporting provenance queries over provenance queries, for now.
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This dissertation proposes language-integrated provenance as a database-
independent implementation strategy for provenance systems. The core idea
is that a programming language itself can provide access to provenance by
systematically rewriting queries to compute provenance. This builds on top
of existing techniques for language-integrated queries and requires no further
support from the database system. In a hypothetical language with provenance
support, we could implement the scenario from above by requesting where-
provenance of the first column and lineage of the second column using the made
up syntax with where-prov and with lineage as seen in the query below.

query {

for (p <- presidents)

where (not(empty(over193000(p))))

[(president = p.name with where-prov,

dates = over193000(p) with lineage)] }

The special provenance features are implemented by translation. For exam-
ple, a plain Links query that computes a similar result as the provenance query
above, could look something like the following.8

query {

for (p <- presidents) where (not(empty(over193000(p))))

[(president = (p.name, ("p","name",p.nth))
dates = (over193000(p),

[("p", p.nth)] ++

for (d <- for (i <- inaugurations)

where (i.nth == p.nth) [i.date])

for (m <- metro)

where (m.date == d && m.time == 11 &&

m.trips >= 193000)

[("i",i.oid), ("m",m.oid)]))] }

This is still not an Sql query and thus cannot be executed by a mainstream
database system. However, it is a valid Links program and the query keyword
makes Links compile it to Sql and execute it on the database. By building on
Links, we can keep the translation of provenance features simple and compo-
sitional and rely on the language to eliminate incidental complexities. More
importantly, we get to use features such as higher-order functions in queries and
nested collections in query results. Note how the dates carry a list of lineage
annotations. This representation is natural in Links but not in Sql, especially

8We use the special oid column in place of row numbers.



8 Chapter 1. Introduction

if you consider Requirements 3 and 4 from above. If we used Sql arrays to
encode lineage annotations, we would need to use a different subset of the
language to operate on annotations, namely the built-in functions for arrays
rather than the usual SELECT, FROM, WHERE. Contrast this with Links, where
lineage is just another nested collection that we can iterate over using for, filter
with where, and combine and compare with other data at will. Furthermore,
generated queries including nested collections are transparent to Links’s query
normalization algorithm and we can generate efficient queries even when fil-
tering based on provenance information. This applies to other languages with
similarly powerful language-integrated query facilities, notably Haskell with
the Dsh library [Ulrich and Grust, 2015].

The above example is aspirational. As yet the depicted language does not
quite exist. This dissertation describes three separate languages based on Links
which explore the design space for language-integrated provenance.

LinksW (Chapter 3) implements fine-grained where-provenance. Program-
mers indicate which database tables and columns should carry where-prove-
nance. LinksW wraps such tables in a view to generate the initial annotations,
and then propagates annotated values through the query. Unfortunately, this
only works if the query does not do anything interesting with the annotated
values except for passing them around. Fortunately, this matches precisely what
we expect from the semantics of where-provenance which annotates values that
were copied, unchanged, from the database. LinksW enforces accurate where-
provenance annotations through its type system. Where-provenance-annotated
values have a special type that distinguishes them from unannotated values and
LinksW guarantees that if a value has provenance type, its annotation is present
and accurate. We state this where-provenance correctness property formally
and prove that LinksW propagates annotated values correctly in Theorem 3.5.
A consequence of the strongly-typed approach is that if the programmer wants
to do anything with an annotated value except for passing it on they have to
unwrap it first. The type system is a valuable guide in these cases, but to add
where-provenance everywhere in a query can be a bit of effort.

LinksL (Chapter 4) implements lineage. LinksL is perhaps the closest to the
above hypothetical language. The lineage keyword transforms a whole query
at once to automatically compute lineage. Unlike in LinksW, there is no need
for programmers to change their query at all except for requesting lineage. In
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terms of language design this is a trade-off in precision and control, manual
annotation effort, and type-safety. The query translation in LinksL is a bit more
complicated because it has to deal correctly with uses, in particular in user-
defined functions, of lineage-annotated values (unlike LinksW which discharges
this responsibility to the programmer). Nevertheless, the translation is fairly
straightforward thanks to Links’s support for queries over nested collections
which enables the obvious representation of lineage annotations as multisets.

We discuss the performance of LinksW and LinksL in Chapter 5, including
comparisons to traditional, database-based provenance systems Perm [Glavic,
2010] and Pug [Lee et al., 2018]. The overhead of querying provenance is in
line with what we would expect for processing more data and comparable to
other systems. Language-integrated provenance generates queries that compute
provenance on demand and allow further processing of provenance annotations
in the same database query, satisfying Requirements 3 and 4 of Glavic et al.
[2013]. The generated queries use the declarative subset of Sql, not user-defined
functions, triggers, or other procedural extensions. This gives the database
system’s query optimizer the opportunity to take both data and provenance into
account, even in the presence of complex queries over provenance information.

LinksT (Chapter 6) allows users to define their own forms of provenance,
including where-provenance and lineage, by writing generic functions that
analyze query traces. LinksW and LinksL are separate extensions of Links, and
thus stop short of fulfilling Requirement 1. Even when combined into a single
implementation, as Stolarek and Cheney [2018] have done, having to extend
the programming language for every new form of provenance a user might
be interested in is not ideal. With LinksT we explore what generic features we
would need to add to the language to be able to implement different forms
of provenance as libraries. Built into the language is a self-tracing translation
that turns a query into an expression that, when executed, would build a tree-
structured trace of the query’s execution. However, the intention is not to execute
the self-tracing query, but to compose it with a function that analyzes the trace
and extracts provenance into a nested relational representation. The language
normalizes the composition of a self-tracing query with a trace analysis function
to obtain an efficient query that does not actually construct the whole trace.

A trace resembles the shape of the query but also records important data-
dependent decisions that were made — or rather will be made — during query
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execution, such as whether a filter condition held. The trace datatype is inspired
by previous work on program and query slicing [Cheney et al., 2014a; Perera
et al., 2012] with two major differences: The traces of lists and records are lists
and records of traces; in other words, trace information is accumulated in the
leaves of a tree of list and record constructors. This goes hand in hand with not
representing variable binding explicitly in the trace. Wherever a bound variable
would appear, we replace it with its trace instead. This frees programmers from
reimplementing binding in every trace analysis function, which will typically
be structured as recursive interpreters of the trace datatype.

Trace analysis functions need to work for queries with any return type. To
this end we introduce generic, polytypic programming features in the form of
typecase and mapping and folding of records. These are well-known features
from other languages such as λML

i [Harper and Morrisett, 1995] and Ur/Web
[Chlipala, 2010]. However, to be able to compile provenance queries based on
the analysis of self-tracing queries to plain Sql, we need to normalize away these
metaprogramming features. We extend the Links normalization rules accord-
ingly and prove progress and preservation properties in Section 6.5. LinksT is
sufficiently general to implement at least where-provenance and lineage. We
show their implementations as trace analysis functions and discuss other forms
of provenance in Section 6.3. A prototype implementation of the extended nor-
malization procedure confirms that the generated queries are mostly reasonable
despite the increased flexibility.

In summary, this dissertation demonstrates that a programming language
can make a fine provenance system all by itself and may even offer increased
safety and flexibility over database-integrated provenance systems.



Chapter 2

Background

This chapter includes material from previously published work [Fehrenbach
and Cheney, 2016, 2018].

This chapter provides the necessary background to understand the rest
of this dissertation. In Section 2.1.1 we describe some forms of provenance
that have been identified in the literature. We focus on where-provenance
and lineage because they will be used later. Section 2.1.2 reviews database-
integrated provenance systems, in particularwith respect to the requirements for
provenance systems laid out by Glavic, Miller, and Alonso [2013] and discussed
in the introduction. Section 2.2 discusses language-integrated query in Links
and other systems. Since the rest of this dissertation treats query compilation as
a black box we do not go into much detail but point interested readers to the
primary literature. Section 2.3 describes the syntax and semantics of a simplified
subset of Links. We focus on those aspects of the language that are relevant
to understand LinksW and LinksL. LinksT is a bigger deviation from Links, in
which polymorphism plays a significant role. It is therefore presented entirely
self-contained in Chapter 6 and not based on the description here.

2.1 Provenance in databases

Provenance metadata is information about the origins and history of something.
The provenance record of a piece of art includes information about the artist,
previous owners, repairs, and restorations. Among other things, a detailed
provenance record plays an important role in judging a piece’s authenticity. In

11
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informatics, we are interested in the provenance of data and processes. Da-
tabases store data and with increasing size and complexity, interest in data
provenance grew in the database research community.

Buneman et al. [2000] identify “some basic issues” to do with data prove-
nance. Unlike paper documents, databases can change over time, sometimes
rapidly. This has implications for citing work derived from database data, archiv-
ing, and reproducibility in general. Provenance metadata can help track sources
and modifications. These issues are particularly important where multiple data
sources come together like in curated databases, such as those used in molecular
biology, and data warehouses which bring together business data stored in
different databases for cross-database analysis. However, there is a difference
between the provenance of information or knowledge of the sort that is stored
in curated scientific databases, data warehouses, and the provenance of specific
database query results. Scientific databases store and organize information from
different sources. The Gene Ontology [Ashburner et al., 2000; The Gene On-
tology Consortium, 2017], for example, stores information about genes, gene
products, and cellular functions. This data is ultimately backed by experiments
published in peer-reviewed publications. It also stores machine-generated an-
notations. Thus the provenance of a particular entry may include information
like “Inferred fromMutant Phenotype” and link to a study on mutant drosophila
melanogaster with extra legs in place of antennae. Data warehouses combine
information from multiple data sources too, but the sources are usually da-
tabases themselves. It may seem easy to point from one database to another
(perhaps easier than pointing to experiments on fruit flies), but the source data
may change rapidly which brings its own challenges.

The area that has seen the most attention from database researchers is the
more narrowly defined data provenance. Data provenance is metadata describing
the origin of results of a particular database query against a particular data-
base. This narrower focus allows researchers to make precise the meaning of
provenance, what exactly it says about the query and data. It turns out that
provenance is not one thing, but there are different forms of provenance that
are suited for answering different kinds of questions. We review some of the
research on different forms of data provenance in Section 2.1.1. We also review
some previous implementations of provenance systems in Section 2.1.2.

Data provenance takes the query as a given, and known to be correct. This
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is not necessarily the case. Queries might well be too complicated, possibly
generated by programs, to be easily understood. In that case, we might want
to use provenance to learn about the query and how it transformed the data.
Tan [2004] calls this the provenance of a data product and Glavic [2010] calls it
transformation provenance. Provenance is also related to query andprogram slicing
[Cheney, 2007; Cheney et al., 2011]. We discuss this particular relationship
in more detail in Chapter 6, which implements data provenance on top of
tracing and was inspired by work on program and query slicing [Cheney et al.,
2014a; Ricciotti et al., 2017]. The sort of provenance supported by the languages
described in this dissertation may help in debugging queries but the focus is
data. For now, language-integrated provenance stops short of full interactive
query debugging. The interested reader may want to consider using tools such
as Habitat [Grust and Rittinger, 2013].

For broader surveys of provenance, seeHerschel, Diestelkämper, andBenLah-
mar [2017], Simmhan, Plale, and Gannon [2005], and Tan, Ko, and Holmes
[2013].

2.1.1 Where? why? how? — questions provenance answers

Given a database D, a query Q, and a piece d of the query result Q(D), the
provenance of d should answer the question: “Which parts ofD contributed to d?”
Buneman, Khanna, and Tan [2001] were the first to point out that this depends
crucially on what you mean by “contributed to”. They identify two forms of
provenance that answer two distinct questions: where a piece d was copied from,
and why it is in Q(D) in the first place. There are other questions one might ask,
like how or why-not? Exact definitions of provenance also depend on details of
the data model, the query language, additional properties like minimality and
invariance under query rewriting, and implementation considerations.

In the following, we try to give an intuition for some forms of provenance
and related concerns with a particular focus on those relevant to Chapters 3, 4,
and 6. Cheney, Chiticariu, and Tan [2009a] survey different forms of provenance
used in relational databases in greater depth and explain and relate them in a
common notational format.
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2.1.1.1 Input-provenance

Glavic [2010] categorizes forms of provenance into three groups, the first of
which only tracks inputs. In a relational database setting this could be the whole
database, or the tables mentioned in a query. This is obviously quite imprecise.
The benefit is that one can treat the computation itself as a black box. Input-
provenance works well for systems that orchestrate arbitrary computations like
generic build systems such as Make [Feldman, 1979] or distributed computing
systems such as Spark [Zaharia et al., 2010]. In the database setting input-
provenance does not play a big role. Queries are more easily analyzed or traced
than arbitrary executables to produce more fine-grained provenance.

2.1.1.2 Where-provenance

Where-provenance is information about where information in a query result
“came from” (or was copied from) in the input. A common reason for asking
for where-provenance is to identify the source of incorrect or surprising data in
a query result. For example, if a name in a query result is misspelled we might
ask for its where-provenance to find the exact location in the database where
we need to fix it.

In the provenance literature, the idea of where-provenance goes back to
Buneman et al. [2001] who identify it as distinct from why-provenance. The
following is based on a later presentation for the nested relational calculus by
Buneman et al. [2008]. In their model, every value is annotated with an abstract
color from some infinitely large set of distinguishable colors. A table would
carry an annotation for the whole table, as would each record or row, and every
cell. A query that just returns the whole table would preserve all annotations. A
simple filtering query would preserve annotations on unchanged rows and cells,
but not the table-level annotation. For example, the table where-fst-snd
(Table 2.1) is annotated with a and its two rows are annotated with b and c

respectively. The individual cells carry annotations d–g.
Where-provenance is arguably the simplest form of provenance but there are

some corner cases to consider. The first is that not all values have meaningful
where-provenance. Take for example the following query:

SELECT fst, snd, fst + snd AS sum, 4 AS const

FROM where-fst-snd
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a fst snd

b 1d 2e

c 2 f 3g

Table 2.1: Example table where-fst-sndwith annotations a–g.

The values in columns fst and snd are copied unchanged and thus should keep
their annotations. But how about the values in the sum column? They originate
from a computation, not the input table. Similarly, the values in column const
originate not from the input table but a constant in the query itself. Clearly the
rows of the result are not copies of any rows in the input either, and neither is the
table itself a copy. Buneman et al. [2001] consider the where-provenance of such
values to be ⊥, or undefined. (Provenance systems based on Sql commonly
use NULL to indicate missing or undefined annotations.) Thus the result with
where-provenance annotations is as follows:

⊥ fst snd sum const

⊥ 1d 2e 3⊥ 4⊥
⊥ 2 f 3g 3⊥ 4⊥

Missing annotations are not the only challenge. Consider the following two
queries which both compute a path from a to b via c.

SELECT x.fst AS a, y.snd AS b, x.snd AS c

FROM where-fst-snd x, where-fst-snd y

WHERE x.snd == y.fst;

SELECT x.fst AS a, y.snd AS b, y.fst AS c

FROM where-fst-snd x, where-fst-snd y

WHERE x.snd == y.fst

The queries are identical except for where they take the value for the c column
from: the left join partner’s snd column, and the right join partner’s fst column,
respectively. When dealing with unannotated values we consider these queries
to be equivalent, because their results are always the same — the condition
explicitly states that the left join partner’ssnd column is the same as the right join
partner’s fst column. Looking at the annotations may allow us to distinguish
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otherwise equal values. In the definition of where-provenance we have a choice:
We can stick with one annotation per value and as a consequence be able to
distinguish the first query from the second by whether the c value is 2e or 2 f ,
or we can allow multiple annotations and require that all equivalent queries
produce the same annotations, which for our example means that the c value
should be 2{e, f}. DBNotes [Chiticariu et al., 2005] implements both a simple
form of where-provenance called default propagation and one that is invariant
under query rewriting, called default-all. It is not clear that they got query
equivalence right, to the point where Gatterbauer, Meliou, and Suciu [2011]
say that “default-all is dangerous” because it can return annotations that are
irrelevant to the result. Just because some value is equal to some other value
does not mean they should share annotations.

For the purposes of this dissertation, the exact details of a given form of
where-provenance are not that important, as long as it is implementable by query
rewriting. The implementation of where-provenance in LinksW is inspired by
Buneman et al. [2008] but annotations are on table cells only. We use multiset
semantics, so annotations on equal results are not combined, and neither are
annotations from different sources, even when the query compares them for
equality, so we are closer to DBNotes’s default propagation. For details, see
Chapter 3 and in particular Theorem 3.5.

2.1.1.3 Why-provenance and lineage

Why-provenance is information that explains why a result was produced. In a
database query setting, this is usually taken to mean a justification or witness to
the query result, that is, a subset of the input records that includes all of the data
needed to generate the result record. Several related forms of why-provenance
have been studied [Buneman et al., 2001; Cheney et al., 2009a; Cui et al., 2000;
Glavic et al., 2013], but many of them only make sense for set-valued collections.

Lineage is one simple form of why-provenance which is applicable to set and
multiset semantics. Intuitively, the lineage of a record r in the result of a query
Q is a subset L of the records in the underlying database D that “justifies” or
“witnesses” the fact that r is in the result Q(D). That is, running Q on only the
records identified as the lineage L of r, should still produce a result containing
r, i.e. r ∈ Q(L). Obviously, this property can be satisfied by many subsets of the
input database, including the whole database D, and this is part of the reason
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a b annotation

1 1 r1

2 2 r2

(a) Table r.

a b annotation

1 2 s1

1 5 s2

(b) Table s.

Figure 2.1: Lineage example database.

why there exist several different definitions of why-provenance (for example, to
require minimality). We follow the common approach of defining the lineage
to be the set of all input database records accessed in the process of producing r;
this is a safe overapproximation of the minimal lineage, and is still usually much
smaller than the whole database.

For example, consider the following Sql query.
SELECT r.b AS v FROM r, s WHERE r.a = s.a

UNION ALL SELECT s.a AS v FROM s WHERE s.b = 5

When run on the annotated database in Figure 2.1 it produces the following
lineage-annotated result. We use multiset semantics here, so we have multiple

v annotations

1 {r1,s1}
1 {r1,s2}
1 {s2}

rows with the same value. All rows differ in their annotations. Interestingly,
not all rows even have the same number of annotations. The last row is pro-
duced by the second argument to UNION ALL and has only one row, namely
s2, as its lineage. The number of lineage annotations on a result depends on
the structure of the query. Depending on the representation of lineage that a
provenance system uses, this can make working with lineage difficult, especially
when queries are generated dynamically at runtime. For example, Grust et al.
[2004] describe a relational encoding of Xml documents and how to translate
XPath expressions into Sql to find nodes. Based on this one can implement an
XPath interpreter using sufficiently powerful language-integrated query facili-
ties [Cheney et al., 2013]. Imagine we wanted to expose this on a website as an
educational resource where people can enter Xml documents and XPath queries
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and see the result as well as which database rows were touched to produce it
(its lineage). In this scenario, the Sql query’s shape and therefore the number
of lineage annotations depends on the XPath query which is not known until
runtime. Perm, for example, stores lineage in additional columns which makes
it hard for the client program to process lineage annotations generically. In
LinksL and LinksT we use Links’s support for nested collections in query results
to represent lineage annotations.

There is another issue with lineage and the generated XPath queries, namely
emptiness tests and negation. In general, non-monotonic queries, that is queries
that use aggregations, emptiness tests, or set difference, do not havewell-defined
lineage. For example, consider the query that selects everything from table a

if table b is empty. Every row in the result would be annotated with a corre-
sponding row in a. So far, so good. However, we would also need to record
somehow the fact that b was empty. We could annotate whole tables in addition
to individual rows, but this would complicate the annotation model. This is the
approach taken in the work on dependency provenance [Cheney et al., 2011]
which is similar to lineage but extends to non-monotonic queries. For LinksL,
we chose to only consider monotonic queries (for details on lineage in LinksL
see Chapter 4, in particular Theorem 4.9 and its Corollary 4.10).

Implementations of lineage specifically include Whips [Cui and Widom,
2000a; Wiener et al., 1995], Trio [Agrawal et al., 2006; Benjelloun et al., 2008;
Widom, 2005], Perm [Glavic, 2010; Glavic and Alonso, 2009], and the work of
Müller et al. [2018]. Lineage can be derived from other forms of why-provenance
and it is an instance of semiring provenance as described in the next section.

2.1.1.4 Semiring provenance

Semiring provenance was first proposed by Green, Karvounarakis, and Tannen
[2007b]. It captures a variety of provenance definitions in a unified model and
thus helped to clarify what exactly people mean when they say provenance, and
how their definitions relate to others’.

In the semiring model, values are annotated with elements of a commutative
semiring (K,+, ·,0,1), where K is a set, + is associative, commutative, with
identity 0, · is associative, commutative, with identity 1, · distributes over+, and
multiplication with 0 annihilates. In K-relational algebra, the familiar operators
of relational algebra operate on values annotatedwith elements of K. Operations
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a b annotation

A B r1

D F r2

(a) Table R.

b c annotation

B C r3

D E r4

B F r5

(b) Table S.

a b annotation

A B r1 · r3 + r1 · r5

D F r2

(c) Result πa,b(R ./ S)∪σa=D(R).

Figure 2.2: Semiring provenance example.

like join and Cartesian product combine annotations of their inputs with · and
operations like union combine annotations with +.

See Figure 2.2 for an example database and an annotated example query
result. If we instantiate the semiring as (B,∨,∧,⊥,>), we obtain standard set
semantics — the annotation reflects whether a tuple is in the result or not. The
semiring (N,+, ·,0,1) results inmultiset semantics— the annotation reflectsmul-
tiplicity. We can obtain why-provenance in the sense of Buneman et al. [2001]
with the following semiring: (P(P(X)),∪,d, /0,{ /0}), where the annotations are
sets of sets of some unique tuple identifier X and AdB = {a∪b : a ∈ A,b ∈ B} is
pairwise union [Green, 2011]. There are other semirings that lead to interesting
provenance including one that produces lineage, one that produces annotations
like the Trio system, and the most general semiring that produces bags of bags
of contributing tuples, or universal provenance polynomials, that can be interpreted
in a variety of ways to recover the other semirings. However, where-provenance
is not quite an instance of semiring provenance because it is defined on the level
of cells, not rows [Cheney et al., 2009a]. Conversely, there are semirings that are
not exactly forms of data provenance, but where the annotations reflect security
levels, possible worlds, or uncertainty.

Semiring provenance has been extended to nested relational calculus and
Xml [Foster et al., 2008], aggregations [Amsterdamer et al., 2011b], difference
[Amsterdamer et al., 2011a], and negation [Köhler et al., 2013]. For even more
on semiring provenance, see recent surveys of the literature [Green and Tannen,
2017; Karvounarakis and Green, 2012].
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2.1.2 Implementations

In this section, we briefly describe a few of the growing number of provenance
systems. In the introduction, we pointed out some design criteria for provenance
systems, including the requirements laid out by Glavic, Miller, and Alonso
[2013]. We will refer back to these in the following and point out for each
systemwhere it stands with respect to supporting different kinds of provenance,
the complexity of the supported query language, the queries supported on
provenance metadata itself, and support for large databases. We also discuss
implementation strategies, in particular whether a given system works with
standard databases. The purpose of this overview is not somuch to rank existing
systems, but rather to show where language-integrated provenance fits in.

2.1.2.1 Whips

A data warehouse is a big database that stores data from different sources —
often themselves databases — in a single place for easier analysis. There are two
major components in a data warehouse: query execution and data integration.
The former is responsible for executing queries on the stored data. The latter is
responsible for fetching data from sources, transforming it, and pushing it to
the warehouse for storage.

Whips is a prototype data integration system that “collects data from hetero-
geneous sources, transforms and summarizes it according to warehouse speci-
fications, and integrates it into the warehouse” [Wiener et al., 1995]. Among
other things, it aims to solve a problem that earlier data warehouse systems had:
they had to be shut down periodically to integrate new data and recompute
materialized views. To this end, Whips tracks lineage: “For a given data item in
a materialized warehouse view, we want to identify the set of source data items
that produced the view item” [Cui et al., 2000].

Whips is a distributed system implemented in C/C++. Users write queries
to define views in Sql, and lineage is tracked internally, automatically by the
system. Even though query debugging is mentioned as one use of lineage in
some of the work on Whips, there is no support for querying lineage directly
in the language. Thus, while Whips implements provenance, it is not really a
system to be used for provenance queries by end-users.

A particular concern for Whips is storage of annotations, or even the whole
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source data, in the warehouse itself to be able to recompute views without
accessing the source databases [Cui and Widom, 2000b]. This is, by design,
contrary toRequirement 4which calls for provenance to be computed ondemand
only.

2.1.2.2 DBNotes

DBNotes is “a Post-It note system for relational databases where every piece of
data may be associated with zero or more notes (or annotations) [which] are
transparently propagated along as data is being transformed” [Chiticariu et al.,
2005]. It supports three annotation propagation schemes called default, default all,
and custom. The default scheme is what we call where-provenance. The default all
scheme is intended as where-provenance that is invariant under query rewriting.
It should propagate all annotations that all equivalent formulations of a query
would propagate. Unfortunately, this has been shown to sometimes propagate
too many annotations [Gatterbauer et al., 2011]. The custom scheme allows
queries to specify which input cells propagate their annotations to which output
cells. A user can encode something like lineage using the custom annotation
propagation scheme but has to do so carefully for each query as there are no
facilities for abstracting over and reusing custom propagation schemes.

The DBNotes implementation consists of two parts: the translator and the
postprocessor [Bhagwat et al., 2005]. The translator takes queries in pSql and
translates them to one or more Sql queries. These are handed to a database
system (Oracle 9i) for evaluation. The postprocessor collects annotations from
the flat relational encoding into nested collections for display.

DBNotes supports select-project-join queries on sets with limited support
for aggregations. Annotations are stored alongside data in the database, in one
annotation column per data column for every relation. This storage scheme
makes multiset queries impossible, because a result of two equal tuples with
one annotation each, is indistinguishable from one tuple with two annotations.

2.1.2.3 Trio

Trio is “a new database system that manages not only data, but also the accuracy
and lineage of the data” [Widom, 2005]. It is not primarily a provenance system,
but rather a database for uncertain values that tracks confidence and sources.
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It implements lineage as the only form of provenance. Confusingly, the work
on Trio uses the word “lineage” more generally for what we call “provenance”
and claims that what they are tracking is closer to where-provenance than
why-provenance [Benjelloun et al., 2008].

One of the stated goals of Trio is to “deploy a working system that is suffi-
ciently easy to adopt and efficient enough that it actually gets used” [Widom,
2005]. Consequently, its authors chose to implement Trio on top of a standard
database system [Benjelloun et al., 2008]. They define their own query language
called TriQL, which is based on Sql but extended with features for dealing
with uncertainty and lineage. There is a hint of language-integrated provenance
in Trio: interaction with Trio happens via an extended version of Python’s
database interface, which rewrites TriQL queries to one or more Sql queries
to pass to PostgreSQL, where the data is stored, for evaluation. However, Trio
uses user-defined functions to implement database operations that propagate
annotations. User-defined functions are hard for database systems to optimize.
Also, lineage is stored in separate tables in the database, violating Requirement 4
of Glavic et al. [2013].

2.1.2.4 Perm

Perm [Glavic, 2010; Glavic and Alonso, 2009; Glavic et al., 2013] is a provenance
system implemented on top of PostgreSQL. Given its authors, it is no great
surprise that Perm fulfills all of the aforementioned requirements for provenance
systems.

Perm supports multiple forms of provenance, including a variation of where-
provenance and its own Perm influence contribution semantics which is based on
lineage. “Perm also supports propagating user-defined annotations” [Glavic
et al., 2013]. As in LinksW however, this customization is limited to the content
of initial annotations; it does not affect their propagation behavior.

Unlike Trio and DBNotes, Perm uses a purely relational representation of
provenance annotations. This encoding allows Perm to use standard relational
operations to operate efficiently not only on data but also provenance informa-
tion. Partly as a consequence, Perm supports computing provenance for a large
subset of Sql, and it supports all of Sql for operating on provenance metadata.
Perm uses additional columns to represent the lineage annotations of each row
in a result. The number of columns and their names depend on the structure of
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the query which makes them slightly difficult to predict and use correctly.
Perm is a fork of PostgreSQL 8.3. There are minor changes to the parser

and other frontend components. The major new component is rewriting prov-
enance queries, just before query planning. Since Perm uses a flat relational
representation of provenance data, no postprocessing is necessary. We compare
the performance of LinksW and LinksL to Perm in Chapter 5.

2.1.2.5 GProM

GProM is the prototype “for a generic database provenance middleware” [Arab
et al., 2014]. In many ways it is the successor of Perm. It uses a query language
that is similar to Perm’s and supports Perm’s form of provenance. In addition, it
supports retroactively computing provenance for past transactions and updates
if the database system supports time travel.

GProM is a database middleware, sitting between a client and a database
system. Because it rewrites queries before they ever reach the database, it can
theoretically support any backend database system. Initially it only supported
Oracle, but its extension Pug (see below) supports PostgreSQL as well.

GProM has a special-purpose optimizer for generated provenance queries
[Niu et al., 2017]. As Müller et al. [2018] observe, queries generated through
provenance rewrites are somewhat untypical for database systems and thus not
always executed optimally. Perhaps GProM’s and other targeted optimizations
can be applied to help database systems with planning provenance queries.

2.1.2.6 Pug

Pug [Lee et al., 2018] is an extension of GProM with a graph-based prove-
nance model on Datalog queries. Their graph-based model is equivalent to
provenance games [Köhler et al., 2013], which in turn generalize semiring prov-
enance. From this model it is possible to efficiently extract more compact forms
of provenance, including why-provenance and why-not–provenance.

The query language is non-recursive Datalog with negation. Aggregations
are not supported. Datalog queries are rewritten to propagate successful and
failed rule derivations bottom-up. The resulting instrumented Datalog pro-
grams are compiled to Sql and executed on a database system (Oracle or
PostgreSQL).
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Lee et al. [2018] used Pug’s support for lineage to compare it to LinksL
using some of the benchmark queries from our comparison with Perm (see
Chapter 5). For small database instances LinksL performs better; for larger
instances Pug performs better. This is partly due to the somewhat inefficient
in-memory representation of query result data in Links, as their comparison of
the raw Sql query runtimes shows.

2.1.2.7 ProQL

ProQL [Karvounarakis et al., 2010] is a language and prototype implementation
for data provenance based on a graph representation of semiring provenance
[Green et al., 2007a,b]. Provenance data is encoded in relations, which are stored
in a relational database. “[The] ProQL prototype, including parsing, unfolding
and translation to Sql queries was implemented as a Java layer running atop”
Db2 [Karvounarakis et al., 2010]. Unlike previous systems, there is some focus
on investigating the use of indices to speed up provenance queries.

2.1.2.8 (Mis-)interpreting Sql

Müller, Dietrich, and Grust [2018] propose a “compositional source-level Sql
rewrite” that transforms an input query “into its own interpreter that wields
data dependencies instead of regular values”. This work covers a richer subset
of Sql than any other provenance system described here, “including recursion,
windowed aggregates, and user-defined functions” [Müller et al., 2018].

Generating provenance for a query q works in two phases. In the first phase,
they run an instrumented query q1 that produces the same result as q but also
records value-based decisions, like whether a predicate held for a row, as a
side effect of evaluation. In the second phase, a query q2 replays decisions
made and recorded by q1 and returns dependency sets. These dependency
sets encode where-provenance and a form of cell-level why-provenance. Both
the tracing query q1 and the interpretation query q2 are Sql queries, so this
approach requires no changes to the database system. However, the queries
make heavy use of advanced Sql features. In theory they could work on any
database; in practice the authors used only PostgreSQL. Performance is better
than Perm on complex queries with large results and worse than Perm on simple
queries with small results. Since provenance is only calculated after the fact
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from a trace of the original query’s execution, provenance metadata cannot be
used directly inside the query.

2.1.2.9 ProvSQL

ProvSQL is “an open-source module for the PostgreSQL database manage-
ment system that adds support for computation of provenance and probabil-
ities of query results” [Senellart et al., 2018]. It supports where-provenance,
semiring provenance, and m-semiring provenance (for negation and why-not–
provenance). Unlike some of the other systems that claim semiring provenance
support, the user can actually define their own semiring and ProvSQL will use
it to compute annotations. Thus a user does not have to extract their custom
provenance from a general provenance polynomial.

Unlike Perm, ProvSQL is not a fork of PostgreSQL, but rather a module
which builds on explicit extension mechanisms. As such it should be relatively
easy to add to an existing PostgreSQL installation. However, it is more tightly
integrated into the database than middleware systems like GProM and systems
based on rewriting to plain Sql queries.

Because of its implementation as a module, ProvSQL is restricted in its inter-
face. In particular, there are no language extensions for querying provenance.
All provenance-related operations are exposed as user-defined functions.

2.2 Language-integrated query

Writing programs that interact with databases can be tricky, because of mis-
matches between the models of computation and data structures used in da-
tabases and those used in conventional programming languages. The default
solution to accessing a database from a program (employed by Jdbc and other
typical database interface libraries) is for the programmer to write queries or
other database commands as uninterpreted strings in the host language, and
these are sent to the database to be executed. This means that the types and
names of fields in the query cannot be checked at compile time and any errors
will only be discovered as a result of a runtime crash or exception. More insidi-
ously, failure to adequately sanitize user-provided parameters in queries opens
the door to Sql injection attacks [Shar and Tan, 2013].
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Agencies

(oid) name based_in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

ExternalTours

(oid) name destination type price in £

3 EdinTours Edinburgh bus 20
4 EdinTours Loch Ness bus 50
5 EdinTours Loch Ness boat 200
6 EdinTours Firth of Forth boat 50
7 Burns’s Islay boat 100
8 Burns’s Mallaig train 40

Figure 2.3: Example tour agencies database instance.

Language-integrated query is a technique for embedding queries into the
host programming language so that their types can be checked statically and
parameters are automatically sanitized. Broadly, there are two common ap-
proaches to language-integrated query. The first approach, which we call Sql
embedding, adds specialized constructs resembling Sql queries to the host lan-
guage, so that they can be typechecked and handled correctly by the program.
This is the approach taken in C# [Meijer et al., 2006], Sml# [Ohori and Ueno,
2011], and Ur/Web [Chlipala, 2015]. The second approach, which we call
comprehension, uses monadic comprehensions or related constructs of the host
language, and generates queries from such expressions. The comprehension
approach builds on foundations for querying databases using comprehensions
developed by Buneman et al. [1995], and has been adopted in languages such
as F# [Syme, 2006] and Links [Cooper et al., 2007] as well as libraries such as
Database-SupportedHaskell (Dsh) [Giorgidze et al., 2011; Ulrich and Grust,
2015] and QueΛ [Suzuki et al., 2016].

The advantage of the comprehension approach over Sql embedding is that it
provides a higher level of abstraction for programmers to write queries, without
sacrificing performance. This advantage is critical to our work, so we will
explain it in some detail. For example, the query shown in Figure 2.4 illustrates
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query {

for (e <-- externalTours)

where (e.type == "boat")
for (a <-- agencies)

where (a.name == e.name)

[(name = e.name, phone = a.phone)] }

Figure 2.4: Boat tours query.

the use of Links’s comprehension syntax. It asks for the names and phone
numbers of all agencies having an external tour of type "boat". The keyword for

performs a comprehension over a table (or other collection), and the where

keyword imposes a Boolean condition filtering the results. The result of each
iteration of the comprehension is a singleton collection containing the record
(name = e.name,phone = a.phone).

Monadic comprehensions do not always correspond exactly to Sql queries,
but for queries that map flat database tables to flat results, it is possible to
normalize these comprehension expressions to a form that is easily translatable
to Sql [Wong, 1996]. For example, the boat tours query in Figure 2.4 does not
directly correspond to a Sql query due to the alternation of for and where

operations; nevertheless, query normalization generates a single equivalent
Sql query in which the where conditions are both pushed into the Sql query’s
WHERE clause:

SELECT e.name AS name, a.phone AS phone

FROM ExternalTours e, Agencies a

WHERE e.type = ’boat’ AND a.name = e.name

Normalization frees the programmer to write queries in more natural ways,
rather than having to fit the query into a pre-defined template expected by Sql.

However, this freedom blurs the boundary between general purpose pro-
gramming language and query language and can lead to problems, for example
if the programmer writes a query-like expression that contains an operation,
such as print or regular expression matching, that cannot be performed on
the database. In early versions of Links, this could lead to unpredictable per-
formance, because queries would unexpectedly be executed on the server in
memory instead of inside the database. The current version uses a type-and-
effect system (as described by Cooper [2009] and Lindley and Cheney [2012])
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to track which parts of the program must be executed in the host language and
which parts may be executed on the database. Using the query keyword above
forces the typechecker to check that the code inside the braces will successfully
execute on the database.

Although comprehension-based language-integrated query may seem (at
first glance) to be little more than a notational convenience, it has since been
extended to provide even greater flexibility to programmers without sacrificing
performance. The original results on normalization (due to Wong [1996])
handle queries over flat input tables, produce flat result tables, and do not allow
calling user-defined functions inside queries. Subsequent work has shown
how to support higher-order functions [Cooper, 2009; Grust and Ulrich, 2013]
and queries that construct nested collections [Cheney et al., 2014c; Ulrich and
Grust, 2015]. For example, we can use functions to factor the previous query
into reusable components, provided the functions are non-recursive and only
perform operations that are allowed in the database.

fun matchingAgencies(name) {

for (a <-- agencies)

where (a.name == name)

[(name = e.name, phone = a.phone)] }

query {

for (e <-- externalTours)

where (e.type == "boat")
matchingAgencies(e.name) }

Cooper’s results show that these queries still normalize to Sql-equivalent queries,
and this algorithm is implemented in Links. Similarly, we can write queries
whose result type is an arbitrary combination of record and collection types,
not just a flat collection of records of base types as supported by Sql:

query {

for (a <-- agencies)

[(name = a.name,

tours = for (e <-- externalTours)

where (e.name == a.name)

[(dest = e.destination, type = e.type)] }

This query produces records whose second tours component is itself a collec-
tion— that is, the query result is of type [(name:String, [(dest:String,

type:Type)])]which contains a nested occurrence of the collection type con-
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structor []. Sql does not directly support queries producing such nested results
— it requires flat inputs and query results.1

Query shredding is an extension of the Links query normalization algorithm
that can translate queries with nested results to Sql [Cheney et al., 2014c].
Given a query whose return type contains n occurrences of the collection type
constructor, query shredding generates n Sql queries that can be evaluated on
the database. Some post-processing is necessary to construct the nested result
from the resulting tables. Still, this is typically much more efficient than loading
the database data into memory and evaluating the query there.

Both capabilities — higher-order functions and nested query results — are
essential building blocks for our approach to provenance. They enable a fairly
naive, compositional translation to produce efficient enough queries. Their
concrete implementation does not matter much. The rest of this dissertation
will treat query compilation as a black box. Other approaches to nested queries
include loop lifting [Grust et al., 2010] which powered Ferry and an experimental
branch of Links [Ulrich, 2011]; flattening which is used in Database-supported
Haskell (Dsh) [Ulrich and Grust, 2015]; and QueΛ [Suzuki et al., 2016] which
implements query shredding plus some extensions inOCaml. Links implements
query shredding and being extensions of Links, that is what the languages in
Chapters 3, 4, and 6 use, but any of the other approaches to nested queries
would work. Being based on Links, this work inherits some of its limitations like
no support for grouping, aggregations, and mixed set and multiset semantics.

2.3 Links syntax & semantics

Links is a research language for “web programmingwithout tiers” [Cooper et al.,
2007]. The traditional architecture for web applications is in three tiers: server,
client, and database. Parts of what is conceptually a single web application
are written in different languages and run on different machines. The server is
written in Perl, Php, Python, JavaScript, Java, Ruby, etc. and sits in the middle
to generate pages (Html, Css, JavaScript) to send to the browser and queries
(Sql) to send to the database. Ensuring consistency across language barriers is
difficult. One solution to this problem is to write the whole web application in a

1Sql:1999 standardizes the ARRAY type, but arrays are not relations and come with their
own restrictions.
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single language: Links.
Links is a statically typed functional programming language. Functions can

be annotated to indicate that they should run on the client or the server. Server
functions are run by the Links interpreter. Links translates client functions to
JavaScript to be run in the browser. Client functions can call server functions
and vice versa seamlessly. Concurrent Links programs can communicate via
message passing. To access the database, Links uses comprehensions over
database tables. These are just like list comprehensions, but are translated to
Sql queries and executed on the database. The Links type system ensures that
the server, client, and database parts all fit together.

Figure 2.5 presents a simplified subset of Links syntax, sufficient for explain-
ing the provenance translations in Chapters 3 and 4. Types include base types O

(such as integers, booleans and strings), table types table(li: Ai)n
i=1, function

types A -> B, record types (li: Ai)n
i=1, and collection types [A]. In Links,

collection types are treated as multisets inside database queries (reflecting Sql’s
default multiset semantics), but represented as lists during ordinary execution.
We use concat lists instead of the more typical cons lists in the formalization
because they lead to nicer rules for comprehensions.

Expressions include standard constructs such as constants, variables, record
construction and field projection, conditionals, and n-ary recursive functions
and application. We use pair types (A,B) and pair syntax (M,N) and pro-
jections M.1, M.2 etc., which are easily definable using records. Constants c

can be functions such as integer addition, equality tests, etc.; their types are
collected in a signature Σ. The signature Σ is also a simple model of a database:
it maps tables to their contents. In Links we write var x = M;N for binding a
variable x to the value of M in expression N. The semantics of the Links con-
structs discussed so far is call-by-value. The expression query {M} introduces
a query block, whose content is not evaluated in the usual call-by-value fash-
ion but instead first normalized to a form equivalent to an Sql query, and then
submitted to the database server. The resulting table (or tables, in the case of a
nested query result) are then translated into a Links value. Queries can be con-
structed using the expressions for the empty collection [], singleton collection
[M], and concatenation of collections M ++ N. In addition, the comprehension
expressions for(x <-- M)N and for(x <- M)L allow us to form queries
involving iteration over tables and collections. The difference between the two
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Base types O ::= Int | Bool | String

Rows R ::= · | R, l : A

Table types T ::= table(R)

Types A,B ::= O | T | A −> B | (R) | [A]

Contexts Γ ::= · | Γ,x : A

Expressions L,M,N ::= c | x | (li = Mi)
n
i=1 | N.l

| fun f (xi|ni=0) N | N(Mi|ni=0)

| var x = M;N | if (L) {M} else {N}

| query {N} | table name with (li : Oi)
n
i=1

| [] | [N] | N ++ M | empty(M)

| for (x <- L) M | where(M) N

| for (x <-- L) M | insert L values M

| update (x <-- L) where M set N

| delete (x <-- L) where M

Values V,W ::= c | (li =Vi)
n
i=1 | fun f (xi|ni=0) N | [] | [V ] |V ++W

Figure 2.5: Syntax of a subset of Links.

expressions is that for(x <-- M) expects M to be a table reference, whereas
for(x <- M) expects M to be a collection. The expression where (M) N is
equivalent to if (M) {N} else {[]}, and is intended for use in filtering query
results. The expression empty (M) tests whether the collection produced by M

is empty. These comprehension syntax constructs can also be used outside a
query block, but they are not guaranteed to be translated to queries in that case.
The insert, delete and update expressions perform updates on database
tables; they are implemented by direct translation to the analogous Sql update
operations.

Figure 2.6 presents the evaluation judgment Σ,M→ Σ′,M′ for Links expres-
sions. We employ evaluation contexts E (following Felleisen and Hieb [1992])
and define the semantics using several axioms that handle redexes and a sin-
gle inference rule that shows how to evaluate an expression in which a redex
occurs inside an evaluation context. The rule for update uses syntactic sugar
for record update called with for brevity. Most of the rules in Figure 2.6 are
pure in the sense that they have no side-effect on the state of the database. Only
the rules for insert, delete and update may change the database state. The
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Σ,(fun f (xi|ni=0) M)(Vi|ni=0)−→ Σ,M[ f := fun f (xi) M,xi :=Vi]

Σ,var x =V ;M −→ Σ,M[x :=V ]

Σ,(li =Vi)
n
i=1.lk −→ Σ,Vk

Σ,if (true) M else N −→ Σ,M

Σ,if (false) M else N −→ Σ,N

Σ,query M −→ Σ,M

Σ,empty([])−→ Σ,true

Σ,empty(V )−→ Σ,false iff V 6= []

Σ,for (x <- []) M −→ Σ,[]

Σ,for (x <- [V ]) M −→ Σ,M[x :=V ]

Σ,for (x <- V ++W ) M −→ Σ,(for (x <- V ) M)++(for (x <-W ) M)

Σ,for (x <-- table t) M −→ Σ,for (x <- Σ(t)) M

Σ,insert (table t) values V −→ Σ[t 7→ Σ(t)++V ],()

Σ
′ = Σ[t 7→ [X ∈ Σ(t)|Σ,M[x := X ]−→∗ Σ,false]]

Σ,delete (x <-- table t) where M −→ Σ
′,()

Σ
′ = Σ[t 7→ [u(X)|X ∈ Σ(t)]] u(X) =


(X with li =Vi) if M[x := X ]−→∗ true

and Ni[x := X ]−→∗ Vi

X otherwise
Σ,update (x <-- table t) where M set (li = Ni)

n
i=1 −→ Σ

′,()

Σ,M −→ Σ
′,M′

Σ,E [M]−→ Σ
′,E [M′]

E ::= [] | E(M1, . . . ,Mn) |V (V1, . . . ,Vi−1,E ,Mi+1, . . . ,Mn)

| (l1 =V1, . . . , li−1 =Vi−1, li = E , li+1 = Mi+1, . . . , ln = Mn) | E .l

| if (E) M else N | empty(E) | [E ] | E ++M |V ++E
| for (x <- E) M | for (x <-- E) M

| insert (E) M | insert (table t) E
| update (x <-- E) where M set (li = Ni)

n
i=1

| delete (x <-- E) where M

Figure 2.6: Semantics of Links.
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rules here present the semantics of Links at a high level, and do not model the
compilation to Sql queries; instead query {M} just evaluates to M.

The type system (again a simplification of the full system) is illustrated in
Figure 2.7. Many rules are standard; we assume a typing signature Σ mapping
constants and primitive operations to their types. The rule for query {M}

refers to an auxiliary judgment A :: QType that essentially checks that A is a valid
query result type, meaning that it is constructed using base types and collection
or record type constructors only:

O :: QType

[Ai :: QType]ni=1

(li : Ai)n
i=1 :: QType

A :: QType

[A] :: QType

Similarly, the R :: BaseRow judgment is used in the Table-rule to ensure that the
types used in a row are all base types:

· :: BaseRow

R :: BaseRow

R, l : O :: BaseRow

Links is a research language and includes a number of features that are
not needed to understand the rest of this dissertation such as variants, recur-
sive datatypes, Xml literals, client/server annotations, formlets [Cooper et al.,
2008], algebraic effects and handlers [Hillerström and Lindley, 2016], session
types [Fowler et al., 2019; Lindley and Morris, 2017], and incremental relational
lenses [Horn et al., 2018]. Since most of these features do not interact with the
language-integrated query parts of Links, we ignore them. Even in the query
parts, the core language of Links described here is a significant simplification
of the full language. To determine whether the code inside a query block is
translatable to Sql, Links uses a type-and-effect system [Lindley and Cheney,
2012]. We use a simplified version of Links’s type system that leaves out effects
and polymorphism. We assume that constants are pure and have a database
equivalent (e.g. no print) and that functions are non-recursive. We also as-
sume that database updates do not appear in queries. This simplified model
is sufficient to explain the contributions of Chapters 3 and 4. The prototype
implementations of LinksW and LinksL are extensions of Links and support
the full language (with some restrictions mentioned later). Polymorphism and
recursive functions play an important role in Chapter 6 where we use a different
core language.
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Const
Σ(c) = A

Γ ` c : A

Var
x : A ∈ Γ

Γ ` x : A

Record
Γ `Mi : Ai (i ∈ {1, . . . ,n})

Γ ` (li = Mi)n
i=1 : (li : Ai)n

i=1

Projection
Γ `M : (li : Ai)n

i=1

Γ `M.lk : Ak

Fun
Γ, [xi : Ai]

n
i=1 `M : B

Γ ` fun (xi|ni=1){M} : (Ai|ni=1) -> B

App
Γ `M : (Ai|ni=1) −> B Γ ` Ni : Ai (i ∈ {1, . . . ,n})

Γ `M(Ni|ni=1) : B

Var
Γ `M : A Γ,x : A ` N : B

Γ ` var x = M;N : B

Query
Γ `M : [A] A :: QType

Γ ` query {M} : [A]

Empty
Γ `M : [A]

Γ ` empty(M) : Bool

Table
R :: BaseRow

Γ ` table n with (R) : table(R)

Empty-List

Γ ` [] : [A]

List
Γ `M : A

Γ ` [M] : [A]

Concat
Γ `M : [A] Γ ` N : [A]

Γ `M ++ N : [A]

For-List
Γ ` L : [A] Γ,x : A `M : [B]

Γ ` for (x <- L) M : [B]

Where
Γ `M : Bool Γ ` N : [B]

Γ ` where (M) N : [B]

For-Table
Γ ` L : table(R) Γ,x : (R) `M : [B]

Γ ` for (x <-- L) M : [B]

Insert
Γ ` L : table(R) Γ `M : [(R)]

Γ ` insert L values M : ()

Update
Γ ` L : table(R) Γ,x : (R) `M : Bool Γ,x : (R) ` N : (R)

Γ ` update (x <-- L) where M set N : ()

Delete
Γ ` L : table(R) Γ,x : (R) `M : Bool

Γ ` delete (x <-- L) where M : ()

Figure 2.7: Typing rules for Links.



Chapter 3

LinksW —where-provenance in
Links

This chapter includes material from previously published work [Fehrenbach
and Cheney, 2015, 2016, 2018].

This chapter describes LinksW, a programming language with built-in sup-
port for generating and querying well-typed where-provenance. We give a brief
overview of the language in Section 3.1. Section 3.2 describes syntax and se-
mantics in detail, including a proof that LinksW propagates where-provenance
annotations correctly. In Section 3.3 we discuss one possible implementation
strategy: a type-directed translation from LinksW to plain Links. We conclude
the chapter by discussing some shortcomings of the design in Section 3.4. We
evaluate the performance of a prototype implementation in Chapter 5.

3.1 Overview

In LinksW we indicate which values should carry where-provenance annotations
by annotating table expressions like the one below.

var presidentsWhereProvDefault =

table "presidents"
with (nth: Int, name: String)

where nth prov default, name prov default;

The last two lines indicate to LinksW that the values in both the nth and name
columns should carry annotations of the form (R, f , i) where R is the source

35
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table (in this case "presidents"), f is the column name ("nth" or "name"), and i is
the row number. By default we use PostgreSQL’s oid column as the source
of row numbers because they can be automatically generated for all tables by
the database system.1 The resulting table could, for example, look like Table 3.1
where annotations are printed as superscripts.

nth name
... ...

44(presidents,nth,524) Barack Obama(presidents,name,524)

45(presidents,nth, 93) Donald Trump(presidents,name, 93)

Table 3.1: What presidentsWhereProvDefault could look like.

LinksW allows limited customization of initialwhere-provenance annotations.
Instead of writing default, we can provide a function that is used to compute
initial annotations. For example, if we trust the nth column to be a key, we
might want to identify presidents by that. In that case we could write a table
declaration like the one below.

var presidentsWhereNth =

table "presidents" with (nth: Int, name: String)

where name prov fun (p) { ("presidents", "name", p.nth) };

Here we do not put an annotation on values in the column nth. More impor-
tantly, we use a custom function to annotate values in the column name. This
function takes a row of the table as input and produces a where-provenance
triple. Here we deviate from the default provenance only in using the running
number of presidents as the third component. The resulting table could look
something like Table 3.2.

Perhaps the most important aspect of where-provenance in LinksW is that
annotated values are distinguished from plain values by their type. A value of
base type O that is annotated with where-provenance has type Prov(O). For
example, when reading the table declared above into memory, we would get
rows where the name field has type Prov(String) instead of String.

asList(presidentsWhereNth) : [(nth: Int, name: Prov(String))]

1Unfortunately, oids are 32 bits only and thus not guaranteed to be unique for large tables in
PostgreSQL 10. User-defined annotations can be used to work around this limitation.
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nth name
... ...

44 Barack Obama(presidents,name,44)

45 Donald Trump(presidents,name,45)

Table 3.2: What presidentsWhereNth could look like.

Annotated values of type Prov(O) support two operations: we can use
data to get the underlying data or prov to get the annotation. These operations
are keywords, but can be thought of as functions of type (Prov(O)) -> O

and (Prov(O)) -> (String, String, Int), respectively. For example,
the following query is equivalent to just using the presidents table directly,
but uses the third component of the custom where-provenance annotation of
the name field, which is equivalent to p.nth.

for (p <-- presidentsWhereNth)

[(name = data p.name, nth = (prov p.name).3)]

Prov is an abstract type, and while it is isomorphic to a simple pair, there
is no constructor for values of Prov type. The only way to get a value of Prov
type is to query an annotated table. This guarantees that where-provenance
annotations are accurate. It is impossible to associate provenance metadata
with the wrong data by accident or design. For example, the following query
would not type-check, because p.name has type Prov(String), meaning it
is backed by evidence from a database table, but "Hillary Clinton" is just a literal
String.

for (p <-- presidentsWhereNth)

[ if (p.nth <> 45) { p.name } else { "Hillary Clinton" } ]

# This does not have type [Prov(String)]. As much as we might

# want it to be true, the type system does not allow us to lie.

In other words, we use the type system to guarantee that every annotated value,
that is every value with a Prov type, has a valid annotation. In this we differ
from previous work: Buneman et al. [2008] for example use the annotation⊥ for
values originating from the query itself; sometimes annotations are sets and can
simply be empty; and Sql-based implementations frequently use NULL. This
is a trade-off — we favour the guarantee of meaningful annotations over the
convenience of a default. Note that it is still possible to write queries like the
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one below, which has accurate provenance for almost all values.
[(name = "Donald Trump",

trips = 999999999, trips_p = ("facts", "alternative", 1))] ++

for (p <-- presidentsWhereNth) for (m <-- metroWhereTrips)

where (p.inauguration == m.date && m.time == 11 && p.nth <> 45)

[(name = data p.name,

trips = data p.trips, trips_p = prov p.trips)]

So far we have discussed where-provenance from a bottom-up perspective:
we declare which columns to annotate and then write queries using provenance
annotations. One of the most important use cases for where-provenance is
debugging databases, that is finding wrong data. In that scenario, we would
take an existing query and modify it to return provenance annotations. For
example, we might have noticed a misspelled name or a number that seems too
good to be true. We would take the query expression and add a column, next to
the one with the wrong data, that returns the provenance. By using the prov

keyword we force inference of a Prov type and follow the type errors until we
either reach a table column to annotate, or an expression that cannot possibly
have where-provenance, like a constant.

3.2 Syntax & semantics
The syntax of plain Links as shown in Figure 2.5 on page 31 is extended as
follows:
Values V ::= · · · |V c

Types O ::= · · · | Prov(O)

Terms L,M,N ::= · · · | data M | prov M | table n with (R) where S

Provenance specifications S ::= · | S, l prov M

Values V can be annotated with a color c to produce annotated values V c.
Since the annotation propagation behavior is independent of the values of
annotations it is often defined using abstract annotations from an infinite set of
distinguishable colors [Buneman et al., 2008; Chiticariu et al., 2005]. In LinksW
annotations have a meaning and can be inspected. We fix colors to be triples
(R, f , i) and interpret R as the source table name, f as the field name, and i as
the row identifier. Annotated values have type Prov(O), where O is a type
argument of base type. We treat Prov(O) itself as a base type, so that it can
be used as part of a table type. (This is needed for initializing provenance as
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explained below.) For example, 42(QA,a,23) has type Prov(O) and represents the
query result 42 which was copied from row 23, column a, of table QA. Crucially,
plain values cannot be annotated freely by source programs; only the LinksW
runtime can construct them.

We add two additional operations, prov and data, to extract the provenance
annotation and the value itself, respectively, from an annotated value. We extend
the semantics from Figure 2.6 on page 32 with the following rules.

Σ,provV c −→ Σ,c

Σ,dataV c −→ Σ,V

E ::= · · · | provE | dataE

The LinksW runtime constructs initial annotations for database values. We
allow programmers to indicate which columns in a database table should carry
annotations and give some control over what the annotations themselves are. To
this end, we extend the syntax of table expressions to allow a list of provenance
initialization specifications l prov M. The expression M in a provenance initial-
ization specification is a function from the type of the unannotated table row
to a provenance triple (String,String,Int). A column need not be anno-
tated with provenance at all. In place of M, we can write default, as syntactic
sugar for a function of the form fun(r){(T,C,r.oid)}where T and C are
replaced by the table and column name, respectively. For example, if we added
default where-provenance to the phone field of the Agencies table, we would
execute the following function on every row, to obtain the phone number’s
provenance: fun(a){("Agencies","phone",a.oid)}. This way we have three
different kinds of columns: plain columns without annotations; columns with
default where-provenance where the annotation will be the table name, column
name, and the row’s oid; and columns with annotations that are computed by
some user-defined function that takes the table row as input.

The typing rules for the new constructs of LinksW are shown in Figure 3.1.
The rules for prov and data are as one would expect from the semantics. The
table rule employs an auxiliary judgment Γ ` S : ProvSpec(R), meaning that in
context Γ, the provenance specification S is valid with respect to record type R. It
also uses an auxiliary operation R.S that defines the type of the provenance view
of a table whose fields are described by R and whose provenance specification
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Γ `V : O Γ ` c : (String, String, Int)

Γ `V c : Prov(O)

Γ `M : Prov(O)

Γ ` prov M : (String, String, Int)

Γ `M : Prov(O)

Γ ` data M : O

R :: BaseRow Γ ` S : ProvSpec(R)

Γ ` table n with (R) where S : table(R.S)

Γ ` L : table(R) Γ `M : [(�R�)]

Γ ` insert L values M : ()

Γ ` L : table(R) Γ,x : (�R�) `M : Bool Γ,x : (�R�) ` N : (�R�)

Γ ` update (x <-- L) where M set N : ()

Γ ` L : table(R) Γ,x : (�R�) `M : Bool

Γ ` delete (x <-- L) where M : ()

Γ ` · : ProvSpec(R)

Γ ` S : ProvSpec(R)

Γ ` S, l prov default : ProvSpec(R)

Γ ` S : ProvSpec(R) Γ `M : (R) -> (String,String,Int)

Γ ` S, l prov M : ProvSpec(R)

Figure 3.1: Additional typing rules for LinksW.

�O� = O

�Prov(A)� = �A�

�(li : Ai)
n
i=1� = (li : �Ai�)

n
i=1

R. · = R

(R, l : O). (S, l prov M) = (R.S), l : Prov(O)

Figure 3.2: LinksW type erasure and augmentation.
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is S. As for ordinary tables, we check that the fields are of base type. These
operations are defined in Figure 3.2. The database update rules make use of an
erasure operation �R� that takes a record or base type and replaces all occurrences
of Prov(A)with A. We want to be able to update data but not provenance. Thus
we erase the Prov type construcutor from record types when typechecking
updates. The provenance specification on the table persists, so if we query an
updated table, the new values will receive up-to-date provenance. Updating
values in the database potentially renders existing annotations invalid. It might
be possible to track annotated values and update or invalidate annotations when
database updates are performed from inside of LinksW. This is complicated by
the fact that other clients can also write to the database. Links currently does
not expose database transactions to the programmer so the same considerations
already apply to unannotated values. For now, we restrict any guarantees to
hold only in the absence of updates.

The followingproofs anddefinitions are based onpreviouswork byBuneman
et al. [2008] in the context of nested relational algebra. The main correctness
property of where-provenance is that annotations on values are propagated
correctly. It should not be the case that we construct annotated values out of
thin air. For the propagation behavior to be correct, it does not matter what
the annotations are or where they come from. Buneman et al. discuss some
other interesting properties which do not hold in our language. In their work,
annotations are completely abstract, and queries have no way to inspect them.
Therefore, they can show that queries are invariant under recoloring of the input.
LinksW has the prov keyword to inspect provenance, thereforewe cannot expect
the same to hold here. However, we speculate that a similar property holds
for sufficiently polymorphic functions by way of parametricity [Wadler, 1989].
In short, a polymorphic function cannot use prov to inspect provenance of its
polymorphic arguments and only pass them on to other polymorphic functions.
Therefore, it cannot possibly depend on the content of the annotations and is
thus invariant under recoloring.

We assume a signature Σ where values inside tables are annotated with
colors. We do not make any assumptions about these colors. However, they are
particularly useful when they are distinct. In the case of distinct annotations on
the input, we can look at the output and trace back annotated values to their
source (assuming evaluation does not conjure up new annotated values out of
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csoΣ(V a) = {V a}∪ csoΣ(V )

csoΣ(tablen) = csoΣ(Σ(n))

csoΣ(c) = /0

csoΣ([]) = /0

csoΣ([M]) = csoΣ(M)

csoΣ(M++N) = csoΣ(M)∪ csoΣ(N)

csoΣ((li = Mi)
n
i=1) =

⋃n
i=1 csoΣ(Mi)

csoΣ(M.l) = csoΣ(M)

csoΣ(fun f (xi|ni=1)M) = csoΣ(M)

csoΣ(M(Ni|ni=1)) = csoΣ(M)∪
⋃n

i=1 csoΣ(Ni)

csoΣ(varx = M;N) = csoΣ(M)∪ csoΣ(N)

csoΣ(if(L)M elseN) = csoΣ(L)∪ csoΣ(M)∪ csoΣ(N)

csoΣ(queryM) = csoΣ(M)

csoΣ(empty(M)) = csoΣ(M)

csoΣ(for(x<-M)N) = csoΣ(M)∪ csoΣ(N)

csoΣ(for(x <-- M)N) = csoΣ(M)∪ csoΣ(N)

Figure 3.3: Colored subobjects in LinksW expressions.

thin air). In Figure 3.3 we define the function csoΣ for finding all colored subobjects
of aLinksW value, and by extension, term. The interesting cases are for annotated
values V a and tables. Ultimately, we want to know that annotations on a query
result point back to the database. The extension to terms allows us to find
annotations in a program and state that we do not invent any during evaluation.
Thus, if we start with a distinctly annotated database and no annotated constants,
we can then guarantee that all annotated values in the result of evaluation come,
without modification, directly from the database.

Theorem 3.5 formally states this intuition of evaluation not inventing anno-
tated values. We first show a helpful lemma: the colored subobjects of a term
substituted into an evaluation context E [M] can be obtained by considering
the evaluation context E and term M separately, instead. We extend csoΣ(−) to
operate on evaluation contexts in the obvious way.

Lemma 3.4. Given evaluation context E and term M, we have:

csoΣ(E [M]) = csoΣ(E)∪ csoΣ(M)

Proof. Proof by induction on the structure of the evaluation context. In the case
for E = []we take the colored subobjects of a hole to be the empty set. The other
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cases are straightforward due to the compositional definition of csoΣ(−) and the
properties of sets and set union ∪.

Theorem 3.5 (Correctness of where-provenance). Let M and N be LinksW terms,
and let Σ be a signature that provides annotated table rows. We have:

Σ,M −→ Σ,N⇒ csoΣ(N)⊆ csoΣ(M)

Proof. Proof by induction on the derivation of the evaluation relation −→.

• Case (fun f (xi)M)(Vi)−→M[ f := fun f (xi)M,xi :=Vi]:

csoΣ(M[ f := fun f (xi)M,xi :=Vi])⊆ csoΣ(M)∪ csoΣ(fun f (xi)M)∪
n⋃

i=0

csoΣ(Vi)

= csoΣ(fun f (xi)M)∪
n⋃

i=0

csoΣ(Vi)

= csoΣ ((fun f (xi)M)(Vi))

• Case varx =V ;M −→M[x :=V ]:

csoΣ(M[x :=V ])⊆ csoΣ(M)∪ csoΣ(V ) = csoΣ(varx =V ;M)

• Case (li =Vi)
n
i=1.lk −→Vk where 1≤ k ≤ n:

csoΣ(Vk)⊆
n⋃

i=1

csoΣ(Vi) = csoΣ((li =Vi)
n
i=1) = csoΣ((li =Vi)

n
i=1.lk)

• Case if(true)M elseN −→M:

csoΣ(M)⊆ csoΣ(M)∪ csoΣ(N) = csoΣ(if(true)M elseN)

• Case if(false)M elseN −→ N:

csoΣ(N)⊆ csoΣ(M)∪ csoΣ(N) = csoΣ(if(false)M elseN)

• Case queryM −→M: csoΣ(M) = csoΣ(queryM)

• Case tablen−→ Σ(n): csoΣ(Σ(n)) = csoΣ(tablen).

• Case empty([])−→ true: csoΣ(true) = /0 = csoΣ(empty([]))
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• Case empty(V )−→ false, where V 6= []:

csoΣ(false) = /0⊆ csoΣ(V ) = csoΣ(empty(V ))

• Case for(x<-[])M −→ []: csoΣ([]) = /0⊆ csoΣ(for(x<-[])M)

• Case for(x<-[V])M −→M[x :=V ]:

csoΣ(M[x :=V ])⊆ csoΣ(M)∪ csoΣ(V ) = csoΣ(for(x<-[V])M)

• Case for(x<-V ++W )M −→ (for(x<-V )M)++(for(x<-W )M):

csoΣ(for(x<-V ++W )M) = csoΣ(V ++W )∪ csoΣ(M)

= csoΣ(V )∪ csoΣ(W )∪ csoΣ(M)

= csoΣ((for(x<-V )M)++(for(x<-W )M))

• Case for(x <-- V )M −→ for(x<-V )M:

csoΣ(for(x<-V )M) = csoΣ(V )∪ csoΣ(M)

= csoΣ(for(x <-- V )M)

• Case M −→M′⇒ E [M]−→ E [M′] (evaluation step inside a context):

csoΣ(E [M′]) = csoΣ(E)∪ csoΣ(M′) Lemma 3.4
⊆ csoΣ(E)∪ csoΣ(M) IH
= csoΣ(E [M]) Lemma 3.4

In this section we made precise the static and dynamic semantics of LinksW,
including the meaning of where-provenance annotations. Intuitively, given an
annotated value, we can be sure that the same value is in the database, and was
given the same initial annotation. If this initial annotation was produced by the
default annotation strategy, we also know that the annotation points back to a
database cell with the same value. Next, we discuss an implementation strategy
for LinksW by type-directed source-to-source translation to plain Links.
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WJOK = O

WJA -> BK = WJAK ->WJBK

WJ(li : Ai)
n
i=1K = (li : WJAiK)n

i=1

WJ[A]K = [WJAK]

WJProv(A)K = (data : WJAK,prov : (String,String,Int))

WJtable(R)K = (table(�R�),() -> [WJ(R)K])

WJ·K = ·

WJΓ,x : AK = WJΓK,x : WJAK

Figure 3.6: Type translation for LinksW.

3.3 Implementation

We define a type-directed translation from LinksW to Links based on the se-
mantics presented in the previous section. The syntactic translation of types
WJAK and contexts WJΓK is shown in Figure 3.6. The expression translation
function WJMK is shown in Figure 3.7. The cases up to table comprehensions
for (<-- L) M are the obvious recursive application ofW. The actual proto-
type implementation extends the Links parser and type checker, and desugars
the new LinksW constructs to Links constructs after type checking, reusing the
backend mostly unchanged.

Values of type Prov(O) are represented at runtime as ordinary Links records
with type (data: O, prov: (String, String, Int)). The keywords
data and prov translate to projections to the respective fields.

We translate table declarations to pairs. The first component is a simple table
declaration where all columns have their primitive underlying non-provenance
type. We will use this table declaration for insert, update, and delete operations.
The second component is essentially a delayed query that calculates where-
provenance for the entire table. The fact that it is delayed is important here,
because it means that it can be inlined and simplified later, rather than loaded
into memory. We compute provenance for each record by iterating over the
underlying table. For every record of the input table, we construct a new record
with the same fields as the table. For every column with provenance, the field’s
value is a record with data and prov fields. The data field is just the value.



46 Chapter 3. LinksW —where-provenance in Links

WJVW K = (data=WJV K,prov =WJW K)

WJcK = c

WJxK = x

WJ(li = Mi)
n
i=1K = (li =WJMiK)n

i=1

WJN.lK = WJNK.l

WJfun(xi|ni=0) {M}K = fun(xi|ni=0) {WJMK}

WJM(Ni|ni=0)K = WJMK(WJNiK|ni=0)

WJvar x = M;NK = var x =WJMK;WJNK

WJquery {M}K = query {WJMK}

WJ[]K = []

WJ[M]K = [WJMK]

WJM ++ NK = WJMK ++WJNK

WJif (L) {M} else {N}K = if (WJLK) {WJMK} else {WJNK}

WJempty (M)K = empty (WJMK)

WJfor (x <- L) MK = for (x <-WJLK)WJMK

WJwhere(M) NK = where(WJMK)WJNK

WJfor (x <-- L) MK = for (x <-WJLK.2())WJMK

WJdata MK = WJMK.data

WJprov MK = WJMK.prov

WJinsert L values MK = insert WJLK.1 values WJMK

WJupdate (x <- L) where M set NK = update (x <-WJLK.1) where WJMK set WJNK

WJdelete (x <- L) where MK = delete (x <-WJLK.1) where WJMK

WJtable n with(R)where SK =

(table n with (R), fun(){for(x <-- table n with (R))[(R.n
x S)]})

·.n
x · = ·

(R, l : O).n
x · = (R.n

x ·), l = x.l

(R, l : O).n
x (S, l prov default) = (R.n

x S), l = (data = x.l,prov = (n, ld ,x.oid))

(R, l : O).n
x (S, l prov M) = (R.n

x S), l = (data = x.l,prov =WJMK(x))

Figure 3.7: Translation of LinksW to Links, and auxiliary operation R.n
x S.
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The prov field is a triple of the table’s name, the column’s name, and the row
identifier as given by the oid column. The translation of table references also
uses an auxiliary operation R.n

x S which, given a row type R, a table name n, a
variable x and a provenance specification S, constructs a record in which each
field contains data from x along with the specified provenance (if any). We
wrap the iteration in an anonymous function to delay execution: otherwise, the
provenance-annotated table would be constructed in memory when the table
reference is first evaluated. We will eventually apply this function in a query,
and the Links query normalizer will inline the provenance annotations and
normalize them along with the rest of the query.

We translate table comprehensions to comprehensions over the second com-
ponent of a translated table declaration. Since that component is a function, we
have to apply it to a (unit) argument.

For example, recall the example database in Figure 2.3 on page 26 and con-
sider the following LinksW table declaration with provenance annotations on
the phone number column:

var agencies =

table "Agencies"
with (name: String, based_in: String, phone: String)

where phone prov default

This would translate to the following pair of a plain Links table declaration for
use in updates and a delayed query fragment that provides initial annotations:

var agencies =

(table "Agencies"
with (name: String, based_in: String, phone: String),

fun () { for (t <-- table "Agencies"
with (name: String, based_in: String,

phone: String))

[(name = t.name, based_in = t.based_in,

phone = (data = t.phone,

prov = ("Agencies", "phone", t.oid)))] })

We assume a second table declaration that is similiarly translated:
var externalTours =

table "ExternalTours"
with (name:String, destination:String, type:String, price:Int)

where destination prov default, price prov default
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Now we can write the following variant of the boat tours query from Figure 2.4
that returns the agency’s phone number’s where-provenance in a separate col-
umn p_phone:

for (a <-- agencies)

for (e <-- externalTours)

where (a.name == e.name && e.type == "boat")
[(name = e.name,

phone = data a.phone,

p_phone = prov a.phone)]

The translated query looks like this:
for (a <-- agencies.2())

for (e <-- externalTours.2())

where (a.name == e.name && e.type == "boat")
[(name = e.name,

phone = a.phone.data,

p_phone = a.phone.prov)]

Query normalization will inline the references to the variables agencies and
externalTours and the resulting expression is too big to reasonably print.
However, query normalization will also symbolically execute projections like
agencies.2, inline the delayed query fragements, remove unused expressions,
and ultimately generate the following Sql query.

SELECT e.name AS name,

a.phone AS phone,

’agencies’ AS p_phone_1,

’phone’ AS p_phone_2,

a.oid AS p_phone_3

FROM agencies AS a, externaltours AS e

WHERE a.name = e.name AND e.type = ’boat’

In this query, the table and column part of the where-provenance are in fact
static, and the generated Sql query reflects this by using constants in the select
clause. We see no trace of pairing a table with a view for initial annotations,
function applications, or nested record projections to data or prov fields.

The type-preservation correctness property of the where-provenance trans-
lation is that it preserves well-formedness. We first need

Lemma 3.8. Let R be a row and S be a provenance specification. Then

• WJ(�R�)K = (R),
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• �(R.S)�= (R).

The type-preservation property for the translation is stated as follows.

Theorem 3.9.

1. For every LinksW context Γ, term M, and type A, if Γ `LinksW M : A then
WJΓK `Links WJMK : WJAK.

2. For every LinksW context Γ, provenance specification S, row R and subrow R′

such that R′ .n
x S is defined, if Γ ` S : ProvSpec(R) thenWJΓK,x:(R) ` (R′ .n

x S) :

WJ(R′ .S)K.

Proof. Proof is by induction on the structure of LinksW derivations. Most cases
for the first part are immediate; we show some representative examples.

• If the derivation is of the form

Γ `M : Prov(A)

Γ ` data M : A

then by induction we haveWJΓK `WJMK : WJProv(A)K, and can conclude:

WJΓK `WJMK : (data : WJAK,prov : (String,String,Int))

WJΓK `WJMK.data : WJAK

• If the derivation is of the form
Data

Γ `M : Prov(A)

Γ ` prov M : (String,String,Int)

then by induction we haveWJΓK `WJMK : WJProv(A)K, and can conclude:

WJΓK `WJMK : (data : WJAK,prov : (String,String,Int))

WJΓK `WJMK.prov : (String,String,Int)

• If the derivation is of the form
Table

R :: BaseRow Γ ` S : ProvSpec(R)

Γ ` table n with (R) where S : table(R.S)
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Then since ‖R.S‖= R (Lemma 3.8) we can conclude:

WJΓK ` table n with (R) : table(‖R.S‖)

and by the second induction hypothesis,
R :: BaseRow

WJΓK ` table n with (R) : table(R)

WJΓK,x:(R) ` (R.n
x S) : WJ(R.S)K

WJΓK,x:(R) ` [(R.n
x S)] : [WJ(R.S)K]

WJΓK ` for(x <-- table n with (R))[(R.n
x S)] : [WJ(R.S)K]

WJΓK ` fun(){for(x <-- table n with (R))[(R.n
x S)]} : () -> [WJ(R.S)K]

• If the derivation is of the form
For-Table
Γ ` L : table(R) Γ,x : (R) `M : [B]

Γ ` for (x <-- L) M : [B]

then by induction we haveWJΓK `WJLK : (table(‖R‖),() -> [WJ(R)K]),
so we can proceed as follows:

WJΓK `WJLK.2 : () -> [WJ(R)K]

WJΓK `WJLK.2() : [WJ(R)K] WJΓK,x : WJ(R)K `WJMK : [WJBK]

WJΓK ` for (x <- WJLK.2())WJMK : [WJBK]

• If the derivation is of the form
Delete
Γ ` L : table(R) Γ,x : (‖R‖) `M : Bool

Γ ` delete (x <-- L) where M : ()

then by induction we have WJΓK `WJLK : WJtable(R)K and WJΓK,x :

WJ(‖R‖)K `WJMK : Bool.
WJΓK `WJLK : (table(‖R‖),() -> [(R)])

WJΓK `WJLK.1 : table(‖R‖) WJΓK,x : (‖R‖) `WJMK : Bool

WJΓK ` delete (x <--WJLK.1) where WJMK : ()

For the second part, we proceed by induction on the structure of the deriva-
tion of Γ ` S : ProvSpec(R). We show one representative case, for derivations of
the form

Γ ` S : ProvSpec(R) Γ `M : (R) -> (String,String,Int)

Γ ` S, l prov M : ProvSpec(R)
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In this case, by induction we have that WJΓK,x:(R) ` (R′ .n
x S) : WJ(R′ . S)K

holds for any subrow R′ of R, and by the first induction hypothesis we also know
thatWJΓK `WJMK : WJ(R)K -> (String,String,Int).

Suppose R′, l : O.n
x S, l prov M. Then we can conclude that

WJΓK,x:(R) ` (R′, l : Prov(O).n
x S, l prov M) : WJ(R′, l : O.S, l prov O)K

because (R′, l : O.n
x S, l prov M)= (R′ .n

x S), l = (data = x.l,prov =WJMK(x))

and R′, l : O.S, l prov O = (R′ .S), l : Prov(O).

Theorem 3.10. For all LinksW terms M,M′ and signatures Σ,Σ′, if Σ,M −→ Σ′,M′,
thenWJΣK,WJMK−→∗WJΣ′K,WJM′K.

Proof. By induction on the evaluation relation−→. We show themost interesting
cases.

• for (x <-- table t with R where S) M −→ for(x <-- Σ(t)) M: The left
hand sideWJfor (x <-- table t with R where S) MK translates to

for (x <- (table t with R, fun () {

for (x <-- table t with R)

[(R .n
x S)]

}).2())

WJMK

which evaluates in multiple steps to:
for (x <- for (x <-- table t with R) [(R .n

x S)]) WJMK

The inner comprehension is just the Links computation of initial annota-
tions and is semantically equivalent to looking up an annotated table in
the signature Σ, and therefore the translation of the right-hand side.

• prov M−→prov M′: WehaveWJprovMK=WJMK.prov andWJprovM′K=

WJM′K.prov. By IH, WJMK.prov −→∗WJM′K.prov.

• provVW −→W : We haveWJprovVW K=(data=WJV K,prov=WJW K).prov

which evaluates toWJW K.

We have shown that annotation-propagation in LinksW is color-propagating
(Theorem 3.5 on page 43), that the translation to Links is type-preserving (The-
orem 3.9), and that the implementation by translation to plain Links simulates
the semantics (Theorem 3.10).
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3.4 Discussion

In this chapter we presented the design and implementation of LinksW — a
programming language with support for where-provenance. It features fine
grained control over which values carry annotations. Annotated values have
separate types from unannotated values and the type system guarantees that an-
notations are accurate. This prevents programmers from accidentally modifying
or erasing annotations.

There is limited support for custom annotations. For each cell, LinksW can
run a user-defined function that takes the row as input and produces a prove-
nance triple. This function can be used to extract external annotations stored in
the same row, but is not quite flexible enough for using external annotations
stored in a separate table. Imagine annotations for table as, column c were stored
in table ps column ct , cc, and cr with rows identified by a common column i. We
would want to write a function like the following to generate provenance for
as.c by querying ps.c∗ like this:

fun (a) {

for (p <-- table ps where ...)

where (a.i == p.i)

[(p.c_t, p.c_c, p.c_r)] }

However, this function has the wrong type: it produces a list of annotations.
There is a function the : ([a]) ∼> a to extract the element of a singleton
list, but it is partial because the list might be empty or contain more than one
(different) element and thus cannot be used in queries. Links currently lacks a
mechanism for declaring uniqueness and foreign key constraints that would
make such queries safe. We could have made where-provenance-annotations
lists of triples instead of exactly one triple to partly avoid this problem. How-
ever, that would require support for nested collections instead of only record
flattening. Links supports nested collections in queries [Cheney et al., 2014c],
but such queries tend to be more expensive. It is also not clear how we could
enforce non-empty lists of annotations.

We limit annotations themselves to be of type (String,String,Int).
This is overly and unnecessarily restrictive. We could parameterize the Prov
type by the type of the annotation in addition to the type of the data. Similarly,
we limit the data to be of base type. Buneman et al. [2008] consider where-



3.4. Discussion 53

provenance in a nested data model where values at any level can be annotated.
We could likely lift the cell-level restriction in LinksW and support annotations
on whole rows and tables.

The implementation of LinksW by translation to plain Links queries is quite
naive. However, thanks to query normalization, it does not necessarily lead to
bad queries and the compositionality offers the benefit that where-provenance
can be used in the same query that generates it. For example, we can use where-
provenance to filter data based on its source table. Where-provenance is often at
least in parts static and normalization exposes this without any special-purpose
static analysis. This can lead to parts of a source query never actually appearing
in the Sql translation. Even when filtering has to happen on dynamic data,
we expect it to be usually much better to push filtering based on provenance
down into the query rather than to produce the whole result with provenance
annotations and then filter the annotated result afterwards.

One area that has not received much attention in practical implementations
of provenance is database updates. LinksW is no exception here: the correctness
properties assume that the underlying database is unchanging. This is of course
not a realistic assumption: Links includes update operations that can change
the database tables, and other database users might concurrently update the
data or even change the structure of the data.

An important design decision in LinksW was to have fine grained where-
provenance annotations by changing table definitions to indicate which columns
carry provenance. The type system then forces all users of such tables to adapt
accordingly, by either propagating annotations or discarding them where neces-
sary. We consider the manual annotation effort reasonable because queries are
typically small. We explore one alternative, automatically adding annotations
everywhere, in LinksL in the next chapter.

Provenance polymorphism could also reduce annotation effort. Some func-
tions, like the identity, are sufficiently polymorphic to work both on anno-
tated and unannotated data. Other functions, such as addition clearly produce
unannotated data. However, there are functions that fall in between these two
extremes. Consider the binary min function that returns the smaller of its
arguments for example. We can write a version for plain Int:

sig min : (Int, Int) -> Int

fun min (a, b) { if (a < b) { a } else { b } }
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and a version for annotated Prov(Int):
sig min’ : (Prov(Int), Prov(Int)) -> Prov(Int)

fun min’ (a, b) { if (data a < data b) { a } else { b } }

Currently it is not possible in LinksW to write a single function definition that
covers both cases. Some form of subtyping or provenance polymorphism could
be an interesting extension. In other languages, provenance-annotated values
can and should be good citizens and participate in existing abstractions such as
type classes.



Chapter 4

LinksL — lineage in Links

This chapter includes material from previously published work [Fehrenbach
and Cheney, 2016, 2018].

This chapter describes a programming language called LinksL with built-in
support for lineage. Section 4.1 gives a brief introduction to the language by
way of examples and discusses some aspects of language design. Section 4.2
describes syntax and semantics, including a precise definition of lineage. Sec-
tion 4.3 describes a type-directed source-to-source translation from LinksL to
plain Links as one possible implementation strategy. In Section 4.4 we discuss
related work on future extensions. We evaluate the performance of a prototype
implementation in Chapter 5.

4.1 Overview

LinksL only includes one new keyword compared to plain Links: lineage

indicates that a query should return a result where each row is annotated with
lineage. For example, we can request the lineage of the boat tours query from
Figure 2.4 on page 27 like this:

lineage {

for (e <-- externalTours)

where (e.type == "boat")
for (a <-- agencies)

where (a.name == e.name)

[(name = e.name, phone = a.phone)] }

55
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This query produces the following result given the example database from
Figure 2.3 on page 26. Compared to the plain result, each row is annotated with

name phone lineage

EdinTours 412 1200 [(Agencies,1),(ExternalTours,5)]
EdinTours 412 1200 [(Agencies,1),(ExternalTours,6)]
Burns’s 607 3000 [(Agencies,2),(ExternalTours,7)]

a list of pairs of table name and row number, which represent all of the rows that
were “necessary” to produce the result row.1 For example, the last row would
not be in the result if either the second row of the agencies table, or the row with
oid 7 of the external tours table, were missing. The multiset of annotations is a
safe over-approximation of the set of rows that is strictly necessary to produce
the result row — any row that is not in the annotations could not have been
necessary. We give a precise definition of the meaning of lineage in LinksL in
Section 4.2, Theorem 4.12.

We have taken some liberties in the presentation as a table. The actual result
is a LinksL value with the following type:

[(data: (name: String, phone: String)

prov: [(String, Int)])]

Compare this to the type of the original query:
[(name: String, phone: String)]

The list type in the original query result type has been replaced by a pair of the
original data and a list of lineage annotations, which are pairs of table name
and row number.

The example also demonstrates how LinksL treats multiset results. The data
portion of a lineage-annotated result is the same as it would have been with
a plain, unannotated query. LinksL annotates each row independently, rather
than merging annotations for equal data. This is why we have two EdinTours
results — the original query also had two EdinTours results. Inspecting the
lineage annotations and referring back to the tables, we can identify the first
result as the Loch Ness tour and the second as the Firth of Forth tour.

The lineage keyword instructs LinksL to add annotations to every row in
a query result, including in nested lists. For example, consider the following

1Again, we use PostgreSQL’s automatically generated oid column for row numbers.
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query that returns the names of all presidents together with the dates of their
inaugurations that saw 193000 or more Metro customers before 11 a.m.

query {

for (p <-- presidents)

[(name = p.name,

dates = for (i <-- inaugurations) where (i.nth == p.nth)

for (m <-- metro) where (m.date == i.date &&

m.time == 11 && m.trips >= 193000)

[i.date])] }

When run against the database in Figure 1.1 on page 2 (on only the rows shown),
this produces the following result:

[(dates = ["1/21/2013", "1/20/2009"], name = "Barack Obama"),
(dates = ["1/20/2017"], name = "Donald Trump"),
(dates = [], name = "George Washington")]

Believers in so-called “alternative facts”2 might expect the lists of dates for
presidents other than Trump to be empty. If we change query to lineage

in the above query we get an annotated result (see Figure 4.1) that explains
why every bit of data in the result is there. Note that we again use the oid
column, which is automatically populated by PostgreSQL, as row identifiers.
The lineage annotations on the outer list point to rows in the presidents table.
Since the query does not filter presidents, each president in the table generates
one row in the output. The annotations on each presidents inauguration dates
point to a row in the inaugurations table and a row in the metro table. Together
with the row of the presidents table, these fulfill all of the join and selection
criteria and are thus sufficient for the date to be in the result.

Besides the different form of provenance, LinksW and LinksL explore slightly
different areas of the design space for language-integrated provenance. In
LinksW the programmer specifies exactly which values carry where-provenance
annotations. In LinksL the programmer requests lineage annotations for a
whole query and the language adds them to every list type. Unlike where-
provenance-annotated values in LinksW, lineage-annotated values in LinksL
are plain data — not elements of some abstract type. Thus LinksW offers more
precise control over what gets annotated and greater type-safety when operating
with annotated values. However, annotating everything requires more effort.
More interestingly, even annotating only a part of the result can result in effort

2Alternative facts are more commonly known as lies.
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[(data = (dates = [(data = "1/20/2009",
prov = [(row = 26250334, table = "inaugurations"),

(row = 26250338, table = "metro")]),
(data = "1/21/2013",
prov = [(row = 26250335, table = "inaugurations"),

(row = 26250337, table = "metro")])],
name = "Barack Obama"),

prov = [(row = 26250331, table = "presidents")]),
(data = (dates = [(data = "1/20/2017",

prov = [(row = 26250336, table = "inaugurations"),
(row = 26250340, table = "metro")])],

name = "Donald Trump"),
prov = [(row = 26250332, table = "presidents")]),
(data = (dates = [], name = "George Washington"),
prov = [(row = 26250330, table = "presidents")])]

Figure 4.1: Lineage-annotated inauguration dates result.

proportional to the size of the query. Expressions and functions which operate
on where-provenance-annotated data may need to be adapted to make them
type-check in LinksW. In contrast, changing query to lineage causes LinksL
to annotate everything automatically. The programmer only has to adapt their
surrounding program, if any, to deal with the annotations. LinksL will rewrite
the query to propagate lineage, even if the query contains functions.

4.2 Syntax & semantics

On the surface, LinksL only adds the keyword lineage to the syntax of plain
Links as defined in Figure 2.5 on page 31.

L,M,N ::= · · · | lineage{M}

Like the keyword query, lineage is followed by a block of code that will be
translated into Sql and executed on the database. The query keyword only
affects where and how the evaluation takes place; the result is the same as if
database tables were lists in memory. The lineage keyword causes the query
to be rewritten to not only compute the result, but also annotate every row of
the result with its lineage.



4.2. Syntax & semantics 59

Lin(A) = (data : A,prov : [(String,Int)])

LJOK = O

LJA -> BK = LJAK -> LJBK

LJ(li : Ai)n
i=1K = (li : LJAiK)n

i=1

LJ[A]K = [Lin(LJAK)]

LJtable(R)K = LJ[(R)]K

Figure 4.2: Lineage type translation.

Lineage
Γ `M : [A] A :: QType

Γ ` lineage {M} : LJ[A]K

Figure 4.3: Additional typing rule for LinksL (see Figure 2.7 for Links).

If M has type [A] (which must be an appropriate query result type) then the
type of lineage{M} is LJ[A]K, where LJ−K is a type translation that adjusts
the types of collections [A] to allow for lineage, as shown in Figures 4.2 and 4.3.

Conceptually, a lineage block evaluates in one step to its result, as can be
seen in Figure 4.4. The result is determined by a second evaluation relation that
is only used “inside” lineage blocks: −→L. The language which −→L operates
on is LinksL, except that list values are replaced by a variant of lists, L̂, where
every list element is annotated with a set of colors:

V ::= · · · | L̂

L̂ ::= [] | [V]a | L̂++ L̂

M ::= · · · |M∪b

Note how the set of annotations a is on the singleton list constructor, not the
actual element value as you might expect. We use annotations to track lineage,
which describes why the value, or row, is in the result. Lineage is not concerned
with what the value actually is.

We consider lineage to be a list of rows in the database and identify them
by their table name and row number, rather than their contents. The type
translation LJ−K replaces every occurrence of the list type constructor in the
type of a lineage query result by a list of records of data and its provenance. For
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Σ̂,annotate(M)−→∗L Σ̂, L̂

Σ,lineageM −→ Σ,a2d(L̂)

annotate([]) = []

annotate([V]) = [annotate(V )] /0

annotate(V ++W ) = annotate(V )++annotate(W )

a2d([]) = []

a2d([V]{a1,...,an}) = [(data= a2d(V ),prov= [a1, . . . ,an])]

a2d(V ++W ) = a2d(V )++a2d(W )

Figure 4.4: Additional LinksL evaluation rule and helper functions.

example, if a query block has type [Bool], the result of the same code in a
lineage block has type [(data: Bool, prov: [(String, Int)])].

The evaluation rule for the lineage keyword uses two helper functions,
also defined in Figure 4.4, for going from LinksL values to annotated values
used inside lineage blocks, and back. The first function is annotate, which
recursively annotates LinksL lists with empty lineage annotations. We assume
an extension of this function to non-list values and arbitrary LinksL terms in
the obvious way. Only rows in database tables will have nonempty lineage
annotations, provided by an extended context Σ̂. The second function is a2d,
which recursively transforms annotated lists into plain data LinksL lists. Non-list
values are traversed in the obvious way. Every annotated list element will be
transformed into a record with data and prov fields. The prov field will hold
the lineage annotations as a list. To match the typing rule, annotations have to
be pairs of a string and a number. In the prototype, we use the table name and
row number, but it is conceivable to generalize lineage annotations in the future.

As Figure 4.5 on the facing page shows, evaluation inside lineage blocks
is almost the same as evaluation outside. The interesting rules are those for
adding annotations to singleton lists and the singleton comprehension rule. A
lineage block is similar to a query block in that it can contain only pure, non-
recursive functions, and no database updates. We do not support empty inside
lineage blocks, because it can lead to non-monotonic queries (see Section 2.1.1.3).
The major differences from ordinary evaluation are in the treatment of for
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Σ̂,[]∪b −→L Σ̂,[]

Σ̂,([V]a)∪b −→L Σ̂,[V]a∪b

Σ̂,(V ++W )∪b −→L Σ̂,V∪b ++W∪b

Σ̂,(fun f (xi|ni=0)M)(Vi|ni=0)−→L Σ̂,M[xi :=Vi]
n
i=0

Σ̂,varx =V ;M −→L Σ̂,M[x :=V ]

Σ̂,for(x<- [])M −→L Σ̂,[]

Σ̂,for(x<-[V]a)M −→L Σ̂,(M[x :=V ])∪a

Σ̂,for(x<-V ++W )M −→L Σ̂,(for(x<-V )M)++for(x<-W )M

Σ̂,for(x<–table t)M −→L Σ̂,for(x<- Σ̂(t))M

Σ̂,query(V )−→L Σ̂,V

Σ̂,if(true)M elseN −→L Σ̂,M

Σ̂,if(false)M elseN −→L Σ̂,N

Σ̂,(li =Vi)
n
i=1.lk −→L Σ̂,Vk

E ::= · · · | E∪b

Figure 4.5: Propagation of lineage annotations.

comprehensions and the new syntax M∪b. A table comprehension takes the table
values from an annotated signature Σ̂, which maps tables to lists with lineage
annotations. A for comprehension over a singleton list adds the singleton’s
annotation to all of the elements in the output list. For this use alonewe introduce
the new type of expression M∪b. It takes a term M and a set of annotations b,
evaluates the term to a list value, and adds the annotations to any existing
annotations. This is not syntax intended to be used by the programmer.

Lineage of a query result tells uswhich elements of the inputwere responsible
for each element of the output to exist. If we run the same query again, but
on only that part of the input that was mentioned in the lineage annotations,
we should get (at least) the same output. (Note that the lineage annotations
that LinksL produces are an over-approximation of the strictly necessary input
rows, but still usually much better than annotating every row with the whole
database.) In order to state this correctness property formally, we need three
auxiliary definitions. The function ‖·‖ collects all lineage annotationsmentioned
in a value and, by straightforward extension, LinksL term. It is defined in
Figure 4.6.
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‖[M]a‖= a∪‖M‖

‖[]‖= /0

‖M++N‖= ‖M‖∪‖N‖

‖M∪b‖= b∪‖M‖

‖table t‖= ‖Σ̂(t)‖

‖varx = M;N‖= ‖M‖∪‖N‖

‖c‖= c

‖(li = Mi)
n
i=1‖=

n⋃
i=1

‖Mi‖

‖M.l‖= ‖M‖

‖fun f (xi|ni=1)M‖= fun f (xi|ni=1)‖M‖

‖if(L)M elseN‖= ‖L‖∪‖M‖∪‖N‖

‖queryM‖= ‖M‖

‖for(x<-M)N‖= ‖M‖∪‖N‖

‖for(x<–M)N‖= ‖M‖∪‖N‖

Figure 4.6: Collecting lineage annotations from an expression.

The function ·|b, defined in Figure 4.7, restricts values, in particular list
elements, to those annotated with a subset of annotations b. We extend this
to LinksL terms in the obvious way and to annotated contexts such that tables
mentioned in a restricted context Σ̂|b do not contain rows which are not in b.
Note that this function always preserves list literals and values originating in
the surrounding program because those are annotated with empty lineage. The
subset relationship in the case distinctions in restriction is perhaps not in the
direction onewould intuitively expect. For example, if we have ([M]{x1})∪{x2} and
restrict to {x1,x2}, then the {x2} ⊆ {x1,x2} case applies and we ultimately have
([M|{x1,x2}]

{x1})∪{x2}. This matches the behavior on values, i.e., ([M]{x1,x2})|{x1,x2}

is [M|{x1,x2}]
{x1,x2}.

Finally we have the recursive sublist relation v, defined in Figure 4.8. For
example, [(a = [2])] v [(a = [1]), (a = [2, 3])].

Suppose a monotonic LinksL query q evaluates, inside a lineage block, to an
annotated value v̂ in a context Σ̂. For every part p̂ of the value v̂ we can obtain
a smaller context Σ̂|‖ p̂‖ by erasing all values from the original context Σ̂ which
are not mentioned in p̂. The lineage annotations are correct if every part p̂v v̂
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[M]a|b =

[M|b]a if a⊆ b

[] otherwise

[]|b = []

(M++N)|b = M|b ++N|b

M∪a|b =

(M|b)∪a if a⊆ b

[] otherwise

table t|b = table t

(varx = M;N)|b = varx = M|b;N|b

c|b = c

(li = Mi)
n
i=1|b = (li = Mi|b)n

i=1

M.l|b = (M|b).l

(fun f (xi|ni=1)M)|b = fun f (xi|ni=1)(M|b)

(if(L)M elseN)|b = if(L|b)M|b elseN|b

(queryM)|b = query(M|b)

(for(x<-M)N)|b = for(x<-M|b)N|b

(for(x<–M)N)|b = for(x<–M|b)N|b

Figure 4.7: Restricting values and terms to those with particular annotations.

of the output v̂ is also a part of the output v̂′ obtained by evaluating the same
query q in the restricted context Σ̂|‖ p̂‖.

Theorem 4.9. Given monotonic terms M and N, a context Σ̂, and a set of annotations
c, we have

Σ̂,M −→L Σ̂,N ⇒ M|c = N|c ∨ Σ̂|c,M|c −→L Σ̂|c,N|c

Proof. By induction on the evaluation relation −→L. We need the alternative
M|c = N|c because sometimes restriction can yield the empty list, on both sides,
in which case there is no evaluation step to be made. The two interesting
cases are the singleton for comprehension, which introduces M∪a, and adding
annotations to a singleton list, which eliminates M∪a.

• Case Σ̂,for (x <- [V]a) M −→L Σ̂,M[x := V ]∪a: We have two cases, de-
pending on c.

– If a ⊆ c then (for (x <- [V]a) M)|c = for (x <- [V |c]a) (M|c) and
therefore Σ̂|c,for (x <- [V |c]a) (M|c)−→L Σ̂|c,(M|c[x :=V |c])∪a.
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V vV []v L

V vV ′

[V]b v [V ′]b

V vV ′ W vW ′

V ++W vV ′++W ′

∀1≤ i≤ n li = l′i Vi vV ′i

(li =Vi)
n
i=1 v (l′i =V ′i )

n
i=1

Figure 4.8: Finding sublists.

Furthermore, we have (M|c[x := V |c])∪a = ((M[x := V ])|c)∪a, which
can be shown by induction, but only states that ·|c is well-behaved
with respect to substitution, and ((M[x := V ])|c)∪a = (M[x := V ])∪a|c
by definition of M∪a|c in the case that a⊆ c, and therefore

Σ̂|c,(for (x <- [V]a) M)|c −→L Σ̂|c,(M[x :=V ]∪a)|c

– Otherwise a 6⊆ c and on the left hand side we have

for (x <- [V]a) M)|c
= for (x <- ([V]a)|c) (M|c)

= for (x <- []) (M|c)

which evaluates to the empty list:

Σ̂|c,for (x <- []) (M|c)−→L Σ̂|c,[]

Since (M[x :=V ]∪a)|c = []we can conclude that

Σ̂|c,(for (x <- [V]a) M)|c −→L Σ̂|c,(M[x :=V ]∪a)|c

• Case Σ̂,([V]b)∪a −→L Σ̂,[V]a∪b: We have two cases depending on c.

– If a ⊆ c then ([V]b)∪a|c = ([V]b|c)∪a. Now, if b ⊆ c then [V]b|c =
[V |c]b andwehave an evaluation step Σ̂|c,([V |c]b)∪a−→L Σ̂|c,[V |c]a∪b

where the term on the right hand side is equal to [V]a∪b|c.
– Otherwise, b 6⊆ c and [V]b|c = [] but on the right hand side we also
have [V]a∪b|c = []. In other words, by restricting with c we get the
same value on both sides. We reach the same conclusion in the case
that a 6⊆ c.
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Corollary 4.10. By repeated application of Theorem 4.9 we have

Σ̂,M −→ j
L Σ̂,N ⇒ Σ̂|c,M|c −→k

L Σ̂|c,N|c

where j,k ∈ N and k ≤ j.

Lemma 4.11. Given a value v̂ and a subvalue p̂v v̂ of that value, we have

p̂v v̂|‖p̂‖

Proof. By induction on the subvalue relation v.

• Cases V vV and []vV are trivially true.

• Case [V]b v [V ′]b: We have [V ′]b|‖[V]b‖ = [V ′]b|b∪‖V‖ by definition,
and V ′|‖V‖ wV by the induction hypothesis, and can therefore conclude
[V]b v [V ′]b|‖[V]b‖.

• The cases for list concatenation and records are similar.

Theorem 4.12 (Correctness of lineage). Let q be a monotonic query with ‖q‖= /0

and let Σ̂ be a context, such that q evaluates to v̂ in Σ̂: Σ̂,q −→∗L Σ̂, v̂. Then for every
sublist p̂v v̂ we can evaluate q in a restricted context Σ̂|‖ p̂‖ to obtain a value v̂′ and p̂

will be a sublist of v̂′.

∀p̂v v̂ : Σ̂|‖ p̂‖,q−→∗L Σ̂|‖ p̂‖, v̂
′ ∧ p̂v v̂′

Proof. Using Corollary 4.10 of Theorem 4.9 we have Σ̂|‖ p̂‖,q|‖ p̂‖ −→∗L Σ̂|‖ p̂‖, v̂|‖ p̂‖

for any p̂ and, because of Lemma 4.11, v̂|‖ p̂‖ w p̂ so set v̂′ = v̂|‖ p̂‖. Since q has no
annotations on its own, it is not affected by restriction: q|‖p̂‖ = q and we can
conclude that Σ̂|‖ p̂‖,q−→∗L Σ̂|‖p̂‖, v̂′∧ p̂v v̂′.

This concludes the syntax and semantics of LinksL. Tables implicitly carry
initial lineage annotations on their rows. Lineage annotations are propagated
and combined inside lineage blocks, modeled by the extended evaluation
relation −→L, but the result of a lineage query is reified into a plain Links value.
Finally, we consider lineage correct if we can run a query, remove all values from
the database that do not appear as lineage annotations in the query result, and
get the same result. Next, we discuss one implementation strategy for LinksL, a
translation from LinksL to plain Links.
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DJOK = O

DJA -> BK = (DJAK ->DJBK,LJAK -> LJBK)

DJ(li : Ai)n
i=1K = (li : DJAiK)n

i=1

DJ[A]K = [DJAK]

DJtable(R)K = (table(R),() -> LJ[(R)]K)

Figure 4.13: Doubling translation on types.

4.3 Implementation

We define a translation from LinksL to Links. The translation has two parts:
an outer translation called the doubling translation (D) and an inner translation
called the lineage translation (L). The former is used for translating ordinary
LinksL code while the latter is used to translate query code inside a lineage

block. In addition to doubling up tables with a view that generates initial
annotations, we also double functions: one version for unannotated evaluation
and one version that propagates lineage annotations. Since functions and queries
can close over variables, we use the L∗ variant of the lineage translation to select
the lineage variant of doubled functions and initialize external lists with empty
lineage.

The syntactic translation of LinksL types for the doubling translation is shown
in Figure 4.13. For the lineage translation, we use the same L translation shown
earlier in Figure 4.2. We writeDJΓK and LJΓK for the obvious extensions of these
translations to contexts.

The translation of LinksL expressions to Links is shown in Figures 4.14–4.16.
Following the type translation, term translation operates in two modes: D and
L. We translate the syntax of ordinary Links programs using the translation
DJ−K. Whenwe reach a lineage block, we switch to using theLJ−K translation.
LJ[M]K provides initial lineage for list literals. Their lineage is simply empty.
Table comprehension is the most interesting case. We translate a table iteration
for (x <-- L) M to a nested list comprehension. The outer comprehension
binds y to the results of the lineage-computing view of L. The inner comprehen-
sion binds a fresh variable z, iterating over LJMK—the original comprehension
body M transformed using L. The original comprehension body M is defined in
terms of x, which is not bound in the transformed comprehension. We therefore
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DJcK = c

DJxK = x

DJ(li = Mi)
n
i=1K = (li =DJMiK)n

i=1

DJN.lK = DJNK.l

DJfun(xi|ni=1) {M}K = (fun(xi|ni=1) {DJMK},L∗Jfun(xi|ni=1) {M}K)

DJM(Ni|ni=1)K = DJMK.1(DJNiKn
i=1)

DJvar x = M;NK = var x =DJMK;DJNK

DJ[]K = []

DJ[M]K = [DJMK]

DJM ++ NK = DJMK ++DJNK

DJif (L) {M} else {N}K = if (DJLK) {DJMK} else {DJNK}

DJquery {M}K = query {DJMK}

DJempty (M)K = empty (DJMK)

DJfor (x <- L) MK = for (x <-DJLK)DJMK

DJwhere(M) NK = where(DJMK)DJNK

DJfor (x <-- L) MK = for (x <-DJLK.1)DJMK

DJinsert L values MK = insert DJLK.1 values DJMK

DJupdate (x <- L) where M set DJNK = update (x <-DJLK.1) where DJMK set NK

DJdelete (x <- L) where MK = delete (x <-DJLK.1) where DJMK

DJlineage {M}K = query {L∗JMK}

DJtable n with (R)K = (table n with (R), fun(){LJtable n with (R)K})

Figure 4.14: Translation of LinksL to Links: outer translation.

replace every occurrence of x in LJMK by y.data. In the body of the nested
comprehension we thus have y, referring to the table row annotated with lin-
eage, and z, referring to the result of the original comprehension’s body, also
annotated with lineage. As the result of our transformed comprehension, we
return the plain data part of z as our data, and the combined lineage annotations
of y and z as our provenance.

One subtlety here is that lineage blocks need not be closed, and so may refer
to variables that were defined (and will be bound to values at runtime) outside
of the lineage block. This could cause problems: for example, if we bind x to
a collection [1,2,3] outside a lineage block and refer to it in a comprehension
inside such a block, then uses of x will expect the collection elements to be
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LJcK = c

LJxK = x

LJ(li = Mi)
n
i=1K = (li = LJMiK)n

i=1

LJN.lK = LJNK.l

LJfun(xi|ni=1) {M}K = (fun(xi|ni=1) {LJMK})

LJM(Ni|ni=1)K = LJMK(LJNiK|ni=1)

LJvar x = M;NK = var x = LJMK;LJNK

LJ[]K = []

LJ[M]K = [(data= LJMK,prov = [])]

LJM ++ NK = LJMK ++ LJNK

LJif (L) {M} else {N}K = if (LJLK) {LJMK} else {LJNK}

LJquery {M}K = query {LJMK}

LJempty (M)K = empty (LJMK)

LJfor (x <- L) MK = for (y <- LJLK)

for (z <- LJMK[x 7→ y.data])

[(data= z.data,prov = y.prov ++ z.prov)]

LJwhere(M) NK = where(LJMK) (LJNK)

LJfor (x <-- L) MK = for (y <- LJLK)

for (z <- LJMK[x 7→ y.data])

[(data= z.data,prov = y.prov ++ z.prov)]

LJlineage {M}K = query {LJMK}

LJtable n with (R)K = for(x <-- table n with (R))[(data= x,prov = [(n,x.oid)])]

Figure 4.15: Translation of LinksL to Links: inner translation.

records such as (data= 1,prov= L) rather than plain numbers. Therefore, such
variables need to be adjusted so that they will have appropriate structure to
be used within a lineage block. The auxiliary type-indexed function d2lJAK in
Figure 4.16 accomplishes this by mapping a value of typeDJAK to one of type
LJAK. We define L∗J−K as a function that applies LJ−K to its argument and
substitutes all free variables x : A with d2lJAK(x).

The DJ−K translation also has to account for functions that are defined
outside lineage blocks but may be called either outside or inside a lineage block.
To support this, the case for functions in the DJ−K translation creates a pair,
whose first component is the recursive DJ−K translation of the function, and
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L∗JMK = LJMK[xi 7→ d2lJAiK(xi)|ni=1]

where x1 : A1, . . . ,xn : An are the free variables of M

d2lJAK : DJAK -> LJAK

d2lJOK(x) = x

d2lJA -> BK( f ) = f .2

d2lJ(l1 : A1, . . . , ln : An)K(x) = (l1 : d2lJA1K(x.l1), . . . , ln : d2lJAnK(x.ln))

d2lJ[A]K(y) = for(x <- y)[(data= d2lJAK(x),prov = [])]

d2lJtable(R)K(t) = t.2()

Figure 4.16: Translation of LinksL to Links: term translation.

whose second component uses the L∗J−K translation to create a version of the
function callable from within a lineage block. (We use L∗J−K because functions
also need not be closed.) Function calls outside lineage blocks are translated to
project out the first component; function calls inside such blocks are translated to
project out the second component (this is actually accomplished via the A -> B

case of d2l.) Finally, the DJ−K translation maps table types and table references
to pairs. This is similar to theWJ−K translation, so we do not explain it in further
detail; the main difference is that we just use the oid column to assign default
provenance to all rows.

For example, if we wrap the query from Figure 2.4 on page 27 in a lineage

block it will be rewritten to this:
for (y_e <- externalTours.2())

for (z_e <- where (y_e.data.type == "boat")
for (y_a <- agencies.2())

for (z_a <- where (y_a.data.name == y_e.data.name)

[(data = (name = y_e.data.name,

phone = y_a.data.phone),

prov = [])])

[(data = z_a.data, prov = y_a.prov ++ z_a.prov)])

[(data = z_e.data, prov = y_e.prov ++ z_e.prov)]

Once agencies and externalTours are inlined, Links’s built-in normaliza-
tion algorithm simplifies this query to:

for (y_a <- table "Agencies" with ...)

for (y_e <- table "ExternalTours" with ...)

where (y_a.data.name == y_e.data.name && y_e.data.type == "boat")
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[(data = (name = y_a.data.name,phone = y_a.data.phone),

prov = [("Agencies", y_a.oid), ("ExternalTours",y_e.oid)])]

We see that normalization did its job, partially evaluating the initial lineage
annotation views, removing unnecessary nesting of comprehensions, and ac-
cumulating conditions in a single where clause. From there, query shredding
[Cheney et al., 2014c] will generate two reasonably efficient Sql queries.

Before considering the main result, we state an auxiliary lemma:

Lemma 4.17. If Γ `M : DJAK then Γ ` d2l(M) : LJAK.

Proof. The proof is by induction on the structure of A but each case is straight-
forward. We show the interesting cases for function types and collection types:

• If A = B1 -> B2 then we proceed as follows:

Γ `M : (DJB1K ->DJB2K,LJB1K -> LJB2K)

Γ `M.2 : LJB1K -> LJB2K

which suffices since LJB1 -> B2K = LJB1K -> LJB2K.

• If A = [B] then we proceed as follows:

Γ `M : [DJBK] assumption
Γ′ ` x : DJBK rule
Γ′ ` d2lJBK(x) : LJBK IH
Γ′ ` [] : [(String,Int)] rule
Γ′ ` (data= d2lJBK(x),prov= []) : Lin(LJBK) rule
Γ′ ` [(data= d2lJBK(x),prov= [])] : [Lin(LJBK)] rule
Γ ` for (x <- M) [(data= d2lJBK(x),prov= [])] : [Lin(LJBK)] rule

where Γ′ = Γ,x : DJBK.

The type-preservation property for the translation from LinksL to Links is
stated as follows:

Theorem 4.18. Let M be given such that Γ `LinksL M : A. Then:

1. LJΓK `Links LJMK : LJAK

2. DJΓK `Links L∗JMK : LJAK

3. DJΓK `Links DJMK : DJAK
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Proof. For the first part, the proof is by induction on the structure of the typing
derivation. The interesting cases are the List, ForList, and ForTable cases,
where lineage annotations are created or combined. We show the details of
the cases for singleton lists and list comprehensions. Table comprehensions are
similar.

• If the derivation is of the form:

List
Γ `M : A

Γ ` [M] : [A]

then we proceed as follows:

LJΓK ` LJMK : LJAK by IH
LJΓK ` [] : [(String,Int)] by rule
LJΓK ` (data= LJMK,prov= []) : Lin(LJAK) by rule
LJΓK ` [(data= LJMK,prov= [])] : [Lin(LJAK)] by rule

which suffices since

LJ[A]K = [LinLJAK]= [(data : LJAK,prov : [(String,Int)])]

• If the derivation is of the form:

For-List
Γ ` L : [A] Γ,x : A `M : [B]

Γ ` for (x <- L) M : [B]
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thenwe proceed as follows,writing Γ′ forLJΓK,y : Lin(LJAK),z : Lin(LJBK):

LJΓK ` LJLK : [Lin(LJAK)] IH
LJΓK,x : LJAK ` LJMK : [Lin(LJBK)] IH
LJΓK,y : Lin(LJAK) ` y.data : LJAK rule
LJΓK,y : Lin(LJAK) ` LJMK[x 7→ y.data] : Lin(LJAK) subst
Γ′ ` z.data : LJBK rule
Γ′ ` y.prov : [(String,Int)] rule
Γ′ ` z.prov : [(String,Int)] rule
Γ′ ` y.prov ++ z.prov : [(String,Int)] rule
Γ′ ` (data= z.data,prov = y.prov ++ z.prov) : Lin(LJBK) rule
Γ′ ` [(data= z.data,prov = y.prov ++ z.prov)] : [Lin(LJBK)] rule
LJΓK,y : Lin(LJAK) `

for (z <- LJMK[x 7→ y.data])

[(data= z.data,prov = y.prov ++ z.prov)] : [Lin(LJBK)]

rule

LJΓK ` for (y <- LJLK)

for (z <- LJMK[x 7→ y.data])

[(data= z.data,prov = y.prov ++ z.prov)] : [Lin(LJBK)]

rule

For the second part, suppose Γ ` M : A. Then by part 1 we know LJΓK `
LJMK : LJAK. Clearly, for each xi : Ai in Γ we haveDJΓK ` xi : DJAiK, so it follows
that DJΓK ` d2l(xi) : LJAiK for each i by Lemma 4.17. Using the (standard)
substitution lemma for Links typing, we can conclude DJΓK ` L∗JMK : LJAK.

Finally, for the third part, again the proof is by induction on the structure
of the derivation of Γ ` M : A. Most cases are straightforward; we show the
interesting cases for functions, function application, and lineage, illustrating
the need for duplicating code in the type translation for functions and the use of
L∗J−K. The cases for updates and table references are similar to those for LinksW,
but simpler because the types of the fields do not change in the translation from
LinksL to Links.

• If the derivation is of the form
Fun

Γ,x : A `M : B

Γ ` fun(x){M} : A -> B

then by induction we have DJΓK,x : DJAK ` DJMK : DJBK and by part 2
we know that DJΓK ` L∗Jfun(x){M}K : LJ(A) -> BK. We can proceed as
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follows:

DJΓK,x : DJAK `DJMK : DJBK by IH
DJΓK ` fun(x){DJMK} : DJAK ->DJBK by rule
DJΓK ` L∗Jfun(x){M}K : LJAK -> LJBK by part 2
DJΓK ` (fun(x){DJMK},L∗Jfun(x){M}K) : DJA -> BK by rule

where the final step relies on the fact that

DJA -> BK = (DJAK ->DJBK,LJAK -> LJBK)

• If the derivation is of the form
App
Γ `M : A -> B Γ ` N : A

Γ `M(N) : B

then we proceed as follows:

DJΓK `DJMK : (DJAK ->DJBK,LJAK -> LJBK) by IH
DJΓK `DJMK.1 : DJAK ->DJBK by rule
DJΓK `DJNK : DJAK by IH
DJΓK `DJMK.1(DJNK) : DJBK by rule

where in the first step we use the fact that

DJA -> BK = (DJAK ->DJBK,LJAK -> LJBK)

• Nested lineage blocks are currently not supported as annotating lineage
annotations with lineage annotations would just duplicate the same anno-
tations.

As with the where-provenance translation, we have proven the correctness
of lineage annotation propagation (Theorem 4.12) and type-preservation of the
translation (Theorem 4.18). The latter is a partial sanity check, but no proof,
that this translation faithfully implements the semantics. A simulation proof
in the style of Theorem 3.10 should intuitively work similarly. However, the
lineage block relies on the lineage annotation propagation operator M∪b in
the LinksW semantics, which does not have a direct translation to plain Links.
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4.4 Discussion

LinksL is inspired by prior work on lineage by Cui et al. [2000] and why-prove-
nance by Buneman et al. [2001]. Almost all of the provenance systemsmentioned
in Section 2.1.2 implement either lineage or some form of why-provenance.

DBNotes [Chiticariu et al., 2005] does not natively implement lineage but we
believe it can be encoded using its support for custom annotation propagation.
DBNotes in particular shows some interesting parallels to LinksL. DBNotesmay
generate multiple Sql queries from a single query with annotation propagation.
LinksL ultimately also generates as many queries as there are list constructors
in the result type. DBNotes uses a post-processing step to construct nested
collections of annotations from flat query results to display to the user. LinksL
also internally stitches flat query results together into a nested result. The
difference is that LinksL gets all of this for free by piggybacking on Links’s
support for nested multisets via query shredding [Cheney et al., 2014c].

This native support for nested multisets leads to the very natural — if not
plain obvious — encoding of lineage as multisets of annotations on every result
row that we use in LinksL. Lineage fits so neatly into the nested multiset data
model that further processing of annotations is just the same as working with
regular data. We can thus claim to fulfill Glavic et al.’s Requirement 3.

We compare the performance of LinksL to Perm in Section 5.3.2. Lee et al.
[2018] compared the performance of LinksL to Pug using some of the same
queries. We discuss their results briefly in Section 5.4. In terms of Requirement
4, we can say that lineage computation scales to large databases since it grows
proportionally to the query result, not the whole database and is computed on
demand for those parts of the database that are relevant to the result.

In terms of type-safety, LinksL does not go as far as LinksW with its abstract
type for where-provenance-annotated data. It is possible to accidentally have
fewer annotations than intended. Consider the following code snippet.

var xs = query { for (x <-- table "xs" ...) f(x) };

lineage { for (x <- xs) g(x) }

Because xs is defined outside of the lineage block, it will be assigned empty
annotations when it is used in the lineage query. Thus the result will not have
annotations referring to the "xs" table (unless added by g). Plain Links already
has essentially the same problem — such queries have suboptimal performance
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—with a easy solutions: enclose the whole expression in a query block or wrap
it in a thunk. One could even argue that this is a feature: it allows users to not
compute lineage for the parts of a query they trust.

In exchange for its weaker correctness guarantees LinksL offers increased
convenience. Changing query to lineage is all that is necessary to propagate
lineage through a whole query. LinksL automatically adds annotations to source
tables and propagates them even through user-defined functions. To make this
work we create a second version of every function which handles lineage. This
is similar to the doubling translation used by Cheney et al. [2014b] to compile a
simplified form of Links to a F#-like core language. Both translations introduce
space overhead and overhead for normal function calls due to pair projections.
Developing a more efficient alternative translation is an interesting topic for
future work, perhaps in combination with a strategy for compiling Links to
native code. The difficulty here is that queries can be constructed at runtime
using higher-order functions. We should also note that the current prototype
implementation of LinksL does not handle doubling of functions correctly. To
run the experiments in the next chapter we manually inlined all functions.

The prototype implementation of LinksL uses the automatically generated
oid column to identify rows for simplicity. This is easily generalized to custom
annotations per table, like in LinksW, and has been implemented by Stolarek
and Cheney [2018]. In other provenance systems, for example Pug [Lee et al.,
2018], lineage contains not only a pointer to the original data, but the data itself.
Since lineage annotations can come from multiple source tables with different
types, doing the same is difficult in a well-typed system. This is not a problem
in Pugwhere lineage annotations are strings, but we do not consider strings a
satisfying solution for LinksL. If Links supported variants in query results, we
could possibly use those for lineage annotations of varying types.





Chapter 5

Performance evaluation

This chapter includes material from previously published work [Fehrenbach
and Cheney, 2016, 2018].

This chapter considers the performance of language-integrated provenance
and in particular that of our prototype implementations of LinksW and LinksL.
In Sections 5.1 and 5.2 we compare them against plain Links to determine the
overhead of tracing where-provenance and lineage, respectively. In Section 5.3
we compare them against Perm, a database-integrated provenance system. Sec-
tion 5.4 discusses threats to validity, performance-related aspects of the proto-
type implementations and related work, and benchmarks performed by [Lee
et al., 2018] comparing LinksL to Pug.

Support for nested relational queries is one of the distinguishing features of
language-integrated provenance compared to other provenance systems and
particularly important in LinksL. We are not aware of a commonly accepted
standard benchmark for nested relational systems, so we turn to the work on
query shredding as a source of benchmark data and nested queries. Cheney et al.
[2014c] use queries against a simple test database schema (see Figure 5.1) that
models an organization with departments, employees and external contacts.1
“Each department has a name, a collection of employees, and a collection of
external contacts. Each employee has a name, a salary, and a collection of tasks.
Some contacts are clients.” Unlike theirs, our database does not include an
additional id field. Instead, we use PostgreSQL’s automatically generated

1I apologize for the use of one of the most boring database schemas imaginable and promise
to do better in the future.

77
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table departments with (oid:Int, name:String)

table employees with (oid:Int, dept:String, name:String, salary:Int)

table tasks with (oid:Int, employee:String, task:String)

table contacts with (oid:Int, dept:String, name:String, client:Bool)

Figure 5.1: Benchmark database schema, cf. Cheney et al. [2014c].

oid column to identify rows in where-provenance and lineage. We populate
the databases at varying sizes using randomly generated data in the same
way: “We vary the number of departments in the organization from 4 to 4096
(by powers of 2). Each department has on average 100 employees and each
employee has 0–2 tasks.” The largest database, with 4096 departments, is 142MB
on disk when exported by pg_dump to a Sql file (which excludes the oid
column). We create additional indices on tasks(employee), tasks(task),
employees(dept), and contacts(dept).

All tests were performed on an otherwise idle desktop systemwith a 3.2 GHz
quad-core CPU, 8 GB RAM, and a 500 GB HDD. The system ran Linux (kernel
version 4.5.0) and we used PostgreSQL 9.4.2 as the database engine. Links and
its variants LinksW and LinksL are interpreters written in OCaml, which were
compiled to native code using OCaml 4.02.3. The exact versions of LinksW and
LinksL used for this set of benchmarks can be downloaded here:
https://www.inf.ed.ac.uk/research/isdd/admin/package?download=188

https://www.inf.ed.ac.uk/research/isdd/admin/package?download=189

5.1 LinksW

To be usable in practice, where-provenance should not have unreasonable run-
time overhead. The nature of where-provenance suggests that the cost of where-
provenance annotations is linear in the size of the result. More precisely, if every
single piece of data is annotated with a similarly sized provenance triple, we
expect the runtime of a fully where-provenance-annotated query to be around
four times the runtime of an unannotated query just for handling more data.

In the following set of benchmarks, we compare queries without any where-
provenance against queries that calculate where-provenance on some of the
result and queries that calculate full where-provenance wherever possible. This
should give us an idea of the overhead of where-provenance on typical queries,

https://www.inf.ed.ac.uk/research/isdd/admin/package?download=188
https://www.inf.ed.ac.uk/research/isdd/admin/package?download=189
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which are somewhere in between full and no provenance. The queries are based
on those with nested results by Cheney et al. [2014c].

We only benchmark default where-provenance, that is table name, column
name, and the database-generated oid for row identification. These are short
strings and integers — just like the values in our test database. External prove-
nance is computed by user-defined database-executable functions and can thus
be arbitrarily expensive.

For full where-provenance we change the table declarations to add prove-
nance to every field (except the oid). This changes the types, so we have to
adapt the queries and some of the helper functions used inside the queries.
Figure 5.2 shows the benchmark queries with full provenance and Figure 5.3
shows the helper functions. Note that, for example, query Q2 maps the data

keyword over the employees tasks before comparing the tasks against "abstract".
Query Q6 returns the outliers in terms of salary and their tasks, concatenated
with the clients, who are assigned the fake task "buy". Since the fake task is not
a database value it cannot have where-provenance and LinksW type system
prevents us from pretending it does. Thus, the list of tasks has type [String],
not [Prov(String)]. Figures 5.4, 5.5, 5.6, and 5.7 show the Sql queries that
are generated by Links for the queries with full where-provenance.

The queries with some where-provenance are derived from the queries with
full provenance. Query Q1 drops provenance from the contacts’ fields. Q2
returns data and provenance separately. It does not actually return less infor-
mation, it is just less type-safe. Q3 drops provenance from the employee. Q4
returns the employees’ provenance only, and drops the actual data. Q5 does
not return provenance on the employees’ fields. Q6 drops provenance on the
department.

5.1.1 Setup

We have three LinksW programs, one for each level of where-provenance anno-
tations. For each database size, we drop all tables and load a dump from disk,
starting with 4096. We then run LinksW three times, once for each program
in order all, some, none. Each of the three programs runs its queries 5 times
in a row and reports the median runtime in milliseconds. The programs mea-
sure runtime using the LinksW built-in function serverTimeMilliseconds
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sig q1: () -> [(name:Prov(String),

contacts:[(client:Prov(Bool), name:Prov(String))],

employees:[(name:Prov(String), salary:Prov(Int),

tasks:[Prov(String)])])]

fun q1() { for (d <-- departments)

[(contacts = contactsOfDept(d),

employees = employeesOfDept(d), name = d.name)] }

sig q2: () -> [(d: Prov(String))]

fun q2() { for (d <- q1()) where (all(d.employees, fun (e) {

contains(map(fun (x) { data x }, e.tasks), "abstract") }))

[(d = d.name)] }

sig q3: () -> [(b: [Prov(String)], e: Prov(String))]

fun q3() { for (e <-- employees) [(b = tasksOfEmp(e), e = e.name)] }

sig q4: () -> [(dpt:Prov(String), emps:[Prov(String)])]

fun q4 () { for (d <-- departments)

[(dpt = d.name, emps = for (e <-- employees)

where ((data d.name) == (data e.dept))

[(e.name)])] }

sig q5: () -> [(a:Prov(String),

b:[(name:Prov(String),salary:Prov(Int),tasks:[Prov(String)])])]

fun q5() { for (t <-- tasks) [(a = t.task, b = employeesByTask(t))] }

sig q6: () -> [(d:Prov(String),p:[(name:Prov(String),tasks:[String])])]

fun q6() { for (x <- q1())

[(d = x.name, p = get(outliers(x.employees),

fun (y) { map(fun (z) { data z }, y.tasks) })

++ get(clients(x.contacts), fun (y) { ["buy"] }))]}

Figure 5.2: LinksW benchmark queries variant allprov.
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fun tasksOfEmp(e) {

for (t <-- tasks) where ((data t.employee) == data e.name)

[t.task] }

fun contactsOfDept(d) {

for (c <-- contacts) where ((data d.name) == data c.dept)

[(client = c.client, name = c.name)] }

fun employeesByTask(t) {

for (e <-- employees) for (d <-- departments)

where ((data e.name) == (data t.employee)

&& (data e.dept) == (data d.name))

[(name = e.name, salary = e.salary, tasks = tasksOfEmp(e))] }

fun employeesOfDept(d) {

for (e <-- employees) where ((data d.name) == data e.dept)

[(name = e.name, salary = e.salary, tasks = tasksOfEmp(e))] }

fun get(xs, f) { for (x <- xs) [(name = x.name, tasks = f(x))] }

fun outliers(xs) { filter(fun (x) { isRich(x) || isPoor(x) }, xs) }

fun clients(xs) { filter(fun (x) { data x.client }, xs) }

Figure 5.3: Helper functions variant allprov.

which in turn uses OCaml’s gettimeofday. These measurements include
query normalization time, running the actual generated query, and building the
result, but not the time it takes to translate LinksW to Links.

5.1.2 Data

Figure 5.8 shows our experimental results. We have one plot for every query,
showing the database size on the x-axis and the median runtime over five
runs on the y-axis. Note that both axes are logarithmic. Measurements of full
where-provenance are in black circles, some in blue squares, and none in yellow
triangles. Based on test runs we had to exclude some results for queries at larger
database sizes because the queries returned results that were too large for Links
to construct as in-memory values. We discuss this flaw in the experimental
design in Section 5.4. In short, there are ways to reduce the memory footprint,
but the more typical use of provenance is debugging smaller results.

The graph for query Q2 looks a bit odd. This seems to be due to Q2 not
actually returning any data for some database sizes, because for some of the (ran-
domly generated) instances there just are no departments where all employees
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SELECT 0 AS "1_1", t2061."2" AS "1_2", 4 AS "2_contacts_1",
row_number() OVER (ORDER BY t2061."2", t2049.name) AS "2_contacts_2",
4 AS "2_employees_1",
row_number() OVER (ORDER BY t2061."2", t2049.name) AS "2_employees_2",
t2049.name AS "2_name_!data", ’departments’ AS "2_name_!prov_1",
’name’ AS "2_name_!prov_2", t2049.oid AS "2_name_!prov_3"

FROM (SELECT 1 AS "2") AS t2061, departments AS t2049;

SELECT 4 AS "1_1", t2063."2" AS "1_2", t2057.client AS "2_client_!data",
’contacts’ AS "2_client_!prov_1", ’client’ AS "2_client_!prov_2",
t2057.oid AS "2_client_!prov_3", t2057.name AS "2_name_!data",
’contacts’ AS "2_name_!prov_1", ’name’ AS "2_name_!prov_2",
t2057.oid AS "2_name_!prov_3"

FROM (SELECT t2049.name AS "1_1_name", t2049.oid AS "1_1_oid",
row_number() OVER (ORDER BY t2049.name) AS "2"

FROM departments AS t2049) AS t2063,

contacts AS t2057

WHERE t2063."1_1_name" = t2057.dept;

SELECT 4 AS "1_1", t2065."2" AS "1_2", t2058.name AS "2_name_!data",
’employees’ AS "2_name_!prov_1", ’name’ AS "2_name_!prov_2",
t2058.oid AS "2_name_!prov_3", t2058.salary AS "2_salary_!data",
’employees’ AS "2_salary_!prov_1", ’salary’ AS "2_salary_!prov_2",
t2058.oid AS "2_salary_!prov_3", 3 AS "2_tasks_1",
row_number() OVER (ORDER BY t2065."2", t2058.name) AS "2_tasks_2"

FROM (SELECT t2049.name AS "1_1_name", t2049.oid AS "1_1_oid",
row_number() OVER (ORDER BY t2049.name) AS "2"

FROM departments AS t2049) AS t2065,

employees AS t2058

WHERE t2065."1_1_name" = t2058.dept;

SELECT 3 AS "1_1", t2067."2" AS "1_2", t2059.task AS "2_!data",
’tasks’ AS "2_!prov_1", ’task’ AS "2_!prov_2", t2059.oid AS "2_!prov_3"

FROM (SELECT t2049.name AS "1_1_name", t2049.oid AS "1_1_oid",
t2058.dept AS "1_2_dept", t2058.name AS "1_2_name",
t2058.oid AS "1_2_oid", t2058.salary AS "1_2_salary",
row_number() OVER (ORDER BY t2049.name, t2058.name) AS "2"

FROM departments AS t2049, employees AS t2058

WHERE t2049.name = t2058.dept) AS t2067,

tasks AS t2059

WHERE t2059.employee = t2067."1_2_name";

Figure 5.4: Generated where-provenace query Q1 in variant allprov.
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-- Q2

SELECT 0 AS "1_1", t2209."2" AS "1_2", t2160.name AS "2_d_!data",
’departments’ AS "2_d_!prov_1", ’name’ AS "2_d_!prov_2",
t2160.oid AS "2_d_!prov_3"

FROM (SELECT 1 AS "2") AS t2209, departments AS t2160

WHERE NOT ( EXISTS (

SELECT 0 AS dummy

FROM employees AS t2203

WHERE t2160.name = t2203.dept

AND (NOT (EXISTS (SELECT 0 AS dummy

FROM tasks AS t2204

WHERE t2204.employee = t2203.name

AND t2204.task = (’abstract’))))));

-- Q3

SELECT 0 AS "1_1", t2464."2" AS "1_2", 2 AS "2_b_1",
row_number() OVER (ORDER BY t2464."2", t2459.name) AS "2_b_2",
t2459.name AS "2_e_!data", ’employees’ AS "2_e_!prov_1",
’name’ AS "2_e_!prov_2", t2459.oid AS "2_e_!prov_3"

FROM (SELECT 1 AS "2") AS t2464, employees AS t2459;

SELECT 2 AS "1_1", t2466."2" AS "1_2", t2462.task AS "2_!data",
’tasks’ AS "2_!prov_1", ’task’ AS "2_!prov_2",
t2462.oid AS "2_!prov_3"

FROM (SELECT t2459.dept AS "1_1_dept", t2459.name AS "1_1_name",
t2459.oid AS "1_1_oid", t2459.salary AS "1_1_salary",
row_number() OVER (ORDER BY t2459.name) AS "2"

FROM employees AS t2459) AS t2466,

tasks AS t2462

WHERE t2462.employee = t2466."1_1_name";

Figure 5.5: Generated where-provenace queries Q2 and Q3 in variant allprov.
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-- Q4

SELECT 0 AS "1_1", t2509."2" AS "1_2", t2504.name AS "2_dpt_!data",
’departments’ AS "2_dpt_!prov_1", ’name’ AS "2_dpt_!prov_2",
t2504.oid AS "2_dpt_!prov_3", 2 AS "2_emps_1",
row_number() OVER (ORDER BY t2509."2", t2504.name) AS "2_emps_2"

FROM (SELECT 1 AS "2") AS t2509, departments AS t2504;

SELECT 2 AS "1_1", t2511."2" AS "1_2", t2507.name AS "2_!data",
’employees’ AS "2_!prov_1", ’name’ AS "2_!prov_2", t2507.oid AS "2_!prov_3"

FROM (SELECT t2504.name AS "1_1_name", t2504.oid AS "1_1_oid",
row_number() OVER (ORDER BY t2504.name) AS "2"

FROM departments AS t2504 ) AS t2511, employees AS t2507

WHERE t2511."1_1_name" = t2507.dept;

-- Q5

SELECT 0 AS "1_1", t2561."2" AS "1_2", t2549.task AS "2_a_!data",
’tasks’ AS "2_a_!prov_1", ’task’ AS "2_a_!prov_2",
t2549.oid AS "2_a_!prov_3", 3 AS "2_b_1",
row_number() OVER (ORDER BY t2561."2", t2549.oid) AS "2_b_2"

FROM (SELECT 1 AS "2") AS t2561, tasks AS t2549;

SELECT 3 AS "1_1", t2563."2" AS "1_2", t2557.name AS "2_name_!data",
’employees’ AS "2_name_!prov_1", ’name’ AS "2_name_!prov_2",
t2557.oid AS "2_name_!prov_3", t2557.salary AS "2_salary_!data",
’employees’ AS "2_salary_!prov_1", ’salary’ AS "2_salary_!prov_2",
t2557.oid AS "2_salary_!prov_3", 2 AS "2_tasks_1",
row_number() OVER (ORDER BY t2563."2", t2557.name, t2558.name) AS "2_tasks_2"

FROM (SELECT t2549.employee AS "1_1_employee", t2549.oid AS "1_1_oid",
t2549.task AS "1_1_task",
row_number() OVER (ORDER BY t2549.oid) AS "2"

FROM tasks AS t2549) AS t2563,

employees AS t2557, departments AS t2558

WHERE t2557.name = t2563."1_1_employee" AND t2557.dept = t2558.name;

SELECT 2 AS "1_1", t2565."2" AS "1_2", t2559.task AS "2_!data",
’tasks’ AS "2_!prov_1", ’task’ AS "2_!prov_2", t2559.oid AS "2_!prov_3"

FROM (SELECT t2549.employee AS "1_1_employee", t2549.oid AS "1_1_oid",
t2549.task AS "1_1_task", t2557.dept AS "1_2_dept",
t2557.name AS "1_2_name", t2557.oid AS "1_2_oid",
t2557.salary AS "1_2_salary", t2558.name AS "1_3_name",
t2558.oid AS "1_3_oid", row_number() OVER (

ORDER BY t2549.oid, t2557.name, t2558.name) AS "2"
FROM tasks AS t2549, employees AS t2557, departments AS t2558

WHERE t2557.name = t2549.employee AND t2557.dept = t2558.name

) AS t2565, tasks AS t2559 WHERE t2559.employee = t2565."1_2_name";

Figure 5.6: Generated where-provenace queries Q4 and Q5 in variant allprov.
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SELECT 0 AS "1_1", t2711."2" AS "1_2", t2650.name AS "2_department_!data",
’departments’ AS "2_department_!prov_1", ’name’ AS "2_department_!prov_2",
t2650.oid AS "2_department_!prov_3", 5 AS "2_people_1",
row_number() OVER (ORDER BY t2711."2", t2650.name) AS "2_people_2"

FROM (SELECT 1 AS "2") AS t2711, departments AS t2650;

(SELECT 5 AS "1_1", t2713."2" AS "1_2", t2707.name AS "2_name_!data",
’employees’ AS "2_name_!prov_1", ’name’ AS "2_name_!prov_2",
t2707.oid AS "2_name_!prov_3", 2 AS "2_tasks_1",
row_number() OVER (ORDER BY t2713."2", t2707.name) AS "2_tasks_2"

FROM (SELECT t2650.name AS "1_1_name", t2650.oid AS "1_1_oid",
row_number() OVER (ORDER BY t2650.name) AS "2"

FROM departments AS t2650) AS t2713, employees AS t2707

WHERE t2713."1_1_name" = t2707.dept

AND (t2707.salary > (1000000) OR t2707.salary < (1000)))

UNION ALL (SELECT 5 AS "1_1", t2715."2" AS "1_2",
t2709.name AS "2_name_!data", ’contacts’ AS "2_name_!prov_1",
’name’ AS "2_name_!prov_2", t2709.oid AS "2_name_!prov_3",
4 AS "2_tasks_1", row_number() OVER (

ORDER BY t2715."2", t2709.name) AS "2_tasks_2"
FROM (SELECT t2650.name AS "1_1_name", t2650.oid AS "1_1_oid",

row_number() OVER (ORDER BY t2650.name) AS "2"
FROM departments AS t2650) AS t2715,

contacts AS t2709

WHERE t2715."1_1_name" = t2709.dept AND t2709.client);

(SELECT 2 AS "1_1", t2717."2" AS "1_2", t2708.task AS "2"
FROM (SELECT t2650.name AS "1_1_name", t2650.oid AS "1_1_oid",

t2707.dept AS "1_2_dept", t2707.name AS "1_2_name",
t2707.oid AS "1_2_oid", t2707.salary AS "1_2_salary",
row_number() OVER (ORDER BY t2650.name, t2707.name) AS "2"

FROM departments AS t2650, employees AS t2707

WHERE t2650.name = t2707.dept

AND (t2707.salary > (1000000) OR t2707.salary < (1000))

) AS t2717, tasks AS t2708

WHERE t2708.employee = t2717."1_2_name")
UNION ALL (SELECT 4 AS "1_1", t2719."2" AS "1_2", ’buy’ AS "2"

FROM (SELECT t2650.name AS "1_1_name", t2650.oid AS "1_1_oid",
t2709.client AS "1_2_client", t2709.dept AS "1_2_dept",
t2709.name AS "1_2_name", t2709.oid AS "1_2_oid",
row_number() OVER (

ORDER BY t2650.name, t2709.name ) AS "2"
FROM departments AS t2650, contacts AS t2709

WHERE t2650.name = t2709.dept AND t2709.client) AS t2719);

Figure 5.7: Generated where-provenace query Q6 in variant allprov.
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Figure 5.8: Where-provenance query runtimes.

Query #depts runtime in ms overall slowdown
allprov someprov noprov (geom mean)

Q1 512 6068 3653 1763 2.26
Q2 4096 60 60 60 1.52
Q3 4096 8100 8064 4497 1.88
Q4 4096 1502 1214 573 2.80
Q5 1024 6778 3457 2832 1.85
Q6 2048 17874 18092 16716 1.22

Figure 5.9: Median runtimes for largest data set a query ran on and geometric
means of overall slowdown across all instance sizes.
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have the task "abstract".
The table in Figure 5.9 shows the median runtime in milliseconds of every

query on the largest database instance. For most queries this is 4096; for Q1 it is
512, 1024 for Q5, and 2048 for Q6. These are the values of the right-most data
points for every variant in every query’s graph above.

The table also lists, for every query, the slowdown of full where-provenance
versus no provenance as the geometric mean across all database sizes. The
slowdown ranges from 1.22 for query Q6 up to 2.8 for query Q4. Note that
query Q2 has the same runtime for all variants at 4096 departments, but full
provenance is slower for some database sizes, so the overall slowdown is > 1.

5.1.3 Interpretation

The graphs suggest that indeed the overhead of where-provenance is indeed
linear in the result size as the lines are more or less parallel. This was expected,
anything else would have suggested a bug in the implementation.

The multiplicative overhead seems to be larger for queries that return more
data. Notably, for query Q2, which returns no data at all on some of our test
database instances, the overhead is hardly visible. The raw amount of data
returned for the full where-provenance queries is three to four times that of
a plain query. Most strings are short names and provenance adds two short
strings and a number for table, column, and row. The largest overhead is 2.8 for
query Q4. This is less than 4, so LinksW exceeds our expectations due to just
raw additional data needing to be processed. One possible explanation is that
the where-provenance in our benchmark queries is largely static; there are only
four tables with a maximum of four columns each.

5.2 LinksL

We expect lineage to have different performance characteristics than where-prov-
enance. Unlike where-provenance, lineage is conceptually set valued. A query
with few actual results could have huge lineage, because lineage is combined
for equal data. In practice, due to Links using multiset semantics for queries,
the amount of lineage is bounded by the shape of the query. Thus, we expect
lineage queries to have the same asymptotic cost as queries without lineage.



88 Chapter 5. Performance evaluation

However, the lineage translation still replaces single comprehensions by nested
comprehensions that combine lineage. We expect this to have a larger impact
on performance than where-provenance, where we only needed to trace a little
more data through the query.

Mea culpa: I made a mistake in the previously published versions of this
set of benchmarks [Fehrenbach and Cheney, 2016, 2018]. I would like to thank
Seokki Lee for finding this mistake when benchmarking LinksL against Pug [Lee
et al., 2018] and pointing it out to me. Query Q7 had excessive runtimes due to
a mistake I made when inlining a helper function by hand because the LinksL
prototype does not handle functions correctly. Instead of joining departments
and employees who are outliers with respect to their salary, it joined matching
employees with big salaries and all employees with small salaries. We reran the
set of benchmarks described in this section on the same hardware, but using a
more recent version of PostgreSQL, namely 10.5. Comparing the correct results
here to the previously published results, we see that almost all queries ran faster.
While this caused the overhead of lineage to be bigger than previously reported
for some queries, it also demonstrates that language-integrated provenance
makes it easy to benefit from continuing improvements to database systems.

5.2.1 Setup

Figure 5.10 lists the queries used in the lineage experiments. To compute lineage,
queries are wrapped in a lineage block. The prototype implementation of
LinksL does not currently handle function calls in lineage blocks correctly, so
in our experiments we used manually written lineage-enabled versions of the
functions employeesByTask and tasksOfEmp, whose bodies are wrapped in
a lineage block. This results in the same Sql query a correct implementation
would produce automatically. It has a negligible effect on normalization time.
We reuse some of the queries from the where-provenance experiments, namely
Q3, Q4, and Q5. Queries AQ6, Q6N, and Q7 are inspired by query Q6, but not
quite the same. Queries QF3 and QF4 are two of the flat queries used by Cheney
et al. [2014c]. Query QC4 computes pairs of employees in the same department
and their tasks in a “tagged union”. Figures 5.12, 5.13, 5.14, 5.15, 5.16, 5.17, 5.18,
5.19, 5.20, 5.21, 5.22, and 5.23 show the generated Sql queries.

We use a similar experimental setup to the one for where-provenance. We
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fun aq6() { for (d <- for (d <-- departments)

[(employees=for (e <-- employees) where (d.name == e.dept)

[(name=e.name, salary=e.salary)], name=d.name)])

[(department=d.name,

outliers=for (o <- d.employees)

where (o.salary > 1000000 || o.salary < 1000) [o])]}

fun q3() { for (e <-- employees) [(b=tasksOfEmp(e), e=e.name)]}

fun q4() { for (d <-- departments)

[(dpt=d.name,

emps=for (e <-- employees) where (d.name == e.dept) [e.name])]}

fun q5() { for (t <-- tasks) [(a=t.task, b=employeesByTask(t))]}

fun q6n() { for (x <-- departments) [(department=x.name, people=

(for (y <-- employees)

where (x.name==y.dept && (y.salary<1000 || y.salary>1000000))

[(name=y.name, tasks=for (z <-- tasks)

where (z.employee == y.name) [z.task])])

++ (for (y <-- contacts) where (x.name == y.dept && y.client)

[(name=y.dept, tasks=["buy"])]))]}
fun q7() { for (d <-- departments) for (e <-- employees)

where (d.name == e.dept && (e.salary > 1000000 || e.salary < 1000))

[(employee=(name=e.name, salary=e.salary), department=d.name)]}

fun qc4() { for (x <-- employees) for (y <-- employees)

where (x.dept == y.dept && x.name <> y.name)

[(a=x.name, b=y.name,

c=(for (t <-- tasks) where (x.name == t.employee)

[(doer="a", task=t.task)])

++ (for (t <-- tasks) where (y.name == t.employee)

[(doer="b", task=t.task)]))]}

fun qf3() { for (e <-- employees) for (f <-- employees)

where (e.dept==f.dept && e.salary==f.salary && e.name<>f.name)

[(e.name, f.name)]}

var QF4 =

(for (t <-- tasks) where (t.task == "abstract") [t.employee]) ++

(for (e <-- employees) where (e.salary > 50000) [e.name])}

Figure 5.10: Lineage queries used in experiments.
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fun employeesByTask(t) { lineage {

for (e <-- employees) for (d <-- departments)

where (e.name == t.employee && e.dept == d.name)

[(name = e.name, salary = e.salary, tasks = tasksOfEmp(e))]}}

fun tasksOfEmp(e) { lineage {

for (t <-- tasks) where (t.employee == e.name) [t.task] } }

Figure 5.11: Lineage-enabled helper functions.

only use databases up to 1024 departments, because most of the queries are a
lot more expensive. Query QC4 computes pairs of employees and their tasks,
which has at least quadratic complexity. It has excessive runtime even for very
small databases. We excluded it from runs on larger databases.

5.2.2 Data

Figure 5.24 shows our lineage experiment results. Again, we have one plot for
every query, showing the database size on the x-axis and the median runtime
over five runs on the y-axis. Both axes are logarithmic. Measurements with
lineage are in black circles, no lineage is shown as yellow triangles.

The table in Figure 5.25 lists queries and their median runtimes with and
without lineage. The time reported is in milliseconds, for the largest database
instance that both variants of a query ran on. For most queries this is 1024; but
it is only 32 for QC4. The table also reports the slowdown of lineage versus no
lineage as the geometric mean over all database sizes. The performance penalty
for using lineage ranges from query QC4 needing 80 percent more time to query
QF3 being more than 8 times slower than its counterpart.

5.2.3 Interpretation

The experiments confirm that lineage has more or less linear overhead. Lineage
is still somewhat expensive to compute, with slowdowns ranging from 1.8 to
more than 8 times slower. At the moment we do not have a clear idea what
causes greater slowdowns. We can rule out nesting depth, seeing that Q4 and
Q5 have the same but are at opposite ends of the slowdown range and the flat
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SELECT 0 AS "1_1", t2499."2" AS "1_2", t2485.name AS "2_data_department",
4 AS "2_data_outliers_1",
row_number() OVER (ORDER BY t2499."2", t2485.name) AS "2_data_outliers_2",
4 AS "2_prov_1",
row_number() OVER (ORDER BY t2499."2", t2485.name) AS "2_prov_2"

FROM (SELECT 1 AS "2") AS t2499, departments AS t2485;

SELECT 4 AS "1_1", t2501."2" AS "1_2", t2495.name AS "2_data_name",
t2495.salary AS "2_data_salary", 2 AS "2_prov_1",
row_number() OVER (ORDER BY t2501."2", t2495.name) AS "2_prov_2"

FROM (SELECT t2485.name AS "1_1_name", t2485.oid AS "1_1_oid",
row_number() OVER (ORDER BY t2485.name) AS "2"

FROM departments AS t2485) AS t2501, employees AS t2495

WHERE t2501."1_1_name" = t2495.dept

AND (t2495.salary > (1000000) OR t2495.salary < (1000));

SELECT 2 AS "1_1", t2503."2" AS "1_2", t2503."1_2_oid" AS "2_row",
’employees’ AS "2_table"

FROM (SELECT t2485.name AS "1_1_name", t2485.oid AS "1_1_oid",
t2495.dept AS "1_2_dept", t2495.name AS "1_2_name",
t2495.oid AS "1_2_oid", t2495.salary AS "1_2_salary",
row_number() OVER (ORDER BY t2485.name, t2495.name) AS "2"

FROM departments AS t2485, employees AS t2495

WHERE t2485.name = t2495.dept

AND (t2495.salary > (1000000) OR t2495.salary < (1000))

) AS t2503;

SELECT 4 AS "1_1", t2505."2" AS "1_2", t2505."1_1_oid" AS "2_row",
’departments’ AS "2_table"

FROM (SELECT t2485.name AS "1_1_name", t2485.oid AS "1_1_oid",
row_number() OVER (ORDER BY t2485.name) AS "2"

FROM departments AS t2485) AS t2505;

Figure 5.12: Generated lineage query AQ6.



92 Chapter 5. Performance evaluation

SELECT 0 AS "1_1", t2404."2" AS "1_2", 4 AS "2_data_b_1",
row_number() OVER (ORDER BY t2404."2", t2395.name) AS "2_data_b_2",
t2395.name AS "2_data_e", 4 AS "2_prov_1",
row_number() OVER (ORDER BY t2404."2", t2395.name) AS "2_prov_2"

FROM (SELECT 1 AS "2") AS t2404, employees AS t2395;

SELECT 4 AS "1_1", t2406."2" AS "1_2", t2401.task AS "2_data",
2 AS "2_prov_1",
row_number() OVER (ORDER BY t2406."2", t2401.oid) AS "2_prov_2"

FROM (SELECT t2395.dept AS "1_1_dept", t2395.name AS "1_1_name",
t2395.oid AS "1_1_oid", t2395.salary AS "1_1_salary",
row_number() OVER (ORDER BY t2395.name) AS "2"

FROM employees AS t2395) AS t2406, tasks AS t2401

WHERE t2401.employee = t2406."1_1_name";

SELECT 2 AS "1_1", t2408."2" AS "1_2", t2408."1_2_oid" AS "2_row",
’tasks’ AS "2_table"

FROM (SELECT t2395.dept AS "1_1_dept", t2395.name AS "1_1_name",
t2395.oid AS "1_1_oid", t2395.salary AS "1_1_salary",
t2401.employee AS "1_2_employee", t2401.oid AS "1_2_oid",
t2401.task AS "1_2_task",
row_number() OVER (ORDER BY t2395.name, t2401.oid) AS "2"

FROM employees AS t2395, tasks AS t2401

WHERE t2401.employee = t2395.name ) AS t2408;

SELECT 4 AS "1_1", t2410."2" AS "1_2", t2410."1_1_oid" AS "2_row",
’employees’ AS "2_table"

FROM (SELECT t2395.dept AS "1_1_dept", t2395.name AS "1_1_name",
t2395.oid AS "1_1_oid", t2395.salary AS "1_1_salary",
row_number() OVER (ORDER BY t2395.name) AS "2"

FROM employees AS t2395) AS t2410;

Figure 5.13: Generated lineage query Q3.
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SELECT 0 AS "1_1", t2421."2" AS "1_2", t2412.name AS "2_data_dpt",
4 AS "2_data_emps_1",
row_number() OVER (ORDER BY t2421."2", t2412.name) AS "2_data_emps_2",
4 AS "2_prov_1",
row_number() OVER (ORDER BY t2421."2", t2412.name) AS "2_prov_2"

FROM (SELECT 1 AS "2") AS t2421, departments AS t2412;

SELECT 4 AS "1_1", t2423."2" AS "1_2", t2418.name AS "2_data",
2 AS "2_prov_1",
row_number() OVER (ORDER BY t2423."2", t2418.name) AS "2_prov_2"

FROM (SELECT t2412.name AS "1_1_name", t2412.oid AS "1_1_oid",
row_number() OVER (ORDER BY t2412.name) AS "2"

FROM departments AS t2412 ) AS t2423, employees AS t2418

WHERE t2423."1_1_name" = t2418.dept;

SELECT 2 AS "1_1", t2425."2" AS "1_2", t2425."1_2_oid" AS "2_row",
’employees’ AS "2_table"

FROM (SELECT t2412.name AS "1_1_name", t2412.oid AS "1_1_oid",
t2418.dept AS "1_2_dept", t2418.name AS "1_2_name",
t2418.oid AS "1_2_oid", t2418.salary AS "1_2_salary",
row_number() OVER (ORDER BY t2412.name, t2418.name) AS "2"

FROM departments AS t2412, employees AS t2418

WHERE t2412.name = t2418.dept ) AS t2425;

SELECT 4 AS "1_1", t2427."2" AS "1_2", t2427."1_1_oid" AS "2_row",
’departments’ AS "2_table"

FROM (SELECT t2412.name AS "1_1_name", t2412.oid AS "1_1_oid",
row_number() OVER (ORDER BY t2412.name) AS "2"

FROM departments AS t2412 ) AS t2427;

Figure 5.14: Generated lineage query Q4.
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SELECT 0 AS "1_1", t2463."2" AS "1_2", t2429.task AS "2_data_a", 7 AS "2_data_b_1",
row_number() OVER (ORDER BY t2463."2", t2429.oid) AS "2_data_b_2",
7 AS "2_prov_1", row_number() OVER (ORDER BY t2463."2", t2429.oid) AS "2_prov_2"

FROM (SELECT 1 AS "2") AS t2463, tasks AS t2429;

SELECT 7 AS "1_1", t2465."2" AS "1_2", t2456.name AS "2_data_name", t2456.salary

AS "2_data_salary", 5 AS "2_data_tasks_1", row_number() OVER (ORDER BY

t2465."2", t2456.name, t2457.name ) AS "2_data_tasks_2", 5 AS "2_prov_1",
row_number() OVER (ORDER BY t2465."2", t2456.name, t2457.name) AS "2_prov_2"

FROM (SELECT t2429.employee AS "1_1_employee", t2429.oid AS "1_1_oid",
t2429.task AS "1_1_task",
row_number() OVER (ORDER BY t2429.oid) AS "2"

FROM tasks AS t2429) AS t2465, employees AS t2456, departments AS t2457

WHERE t2456.name = t2465."1_1_employee" AND t2456.dept = t2457.name;

SELECT 5 AS "1_1", t2467."2" AS "1_2", t2458.task AS "2_data", 2 AS "2_prov_1",
row_number() OVER (ORDER BY t2467."2", t2458.oid) AS "2_prov_2"

FROM (SELECT t2429.employee AS "1_1_employee", t2429.oid AS "1_1_oid",
t2429.task AS "1_1_task", t2456.dept AS "1_2_dept",
t2456.name AS "1_2_name", t2456.oid AS "1_2_oid",
t2456.salary AS "1_2_salary", t2457.name AS "1_3_name",
t2457.oid AS "1_3_oid",
row_number() OVER (ORDER BY t2429.oid, t2456.name, t2457.name) AS "2"

FROM tasks AS t2429, employees AS t2456, departments AS t2457

WHERE t2456.name = t2429.employee AND t2456.dept = t2457.name) AS t2467,

tasks AS t2458 WHERE t2458.employee = t2467."1_2_name";

SELECT 2 AS "1_1", t2469."2" AS "1_2", t2469."1_4_oid" AS "2_row", ’tasks’ AS "2_table"
FROM (SELECT t2429.employee AS "1_1_employee", t2429.oid AS "1_1_oid",

t2429.task AS "1_1_task", t2456.dept AS "1_2_dept",
t2456.name AS "1_2_name", t2456.oid AS "1_2_oid",
t2456.salary AS "1_2_salary", t2457.name AS "1_3_name",
t2457.oid AS "1_3_oid", t2458.employee AS "1_4_employee",
t2458.oid AS "1_4_oid", t2458.task AS "1_4_task",
row_number() OVER (

ORDER BY t2429.oid, t2456.name, t2457.name, t2458.oid

) AS "2"
FROM tasks AS t2429, employees AS t2456, departments AS t2457,

tasks AS t2458

WHERE (t2456.name = t2429.employee AND t2456.dept = t2457.name)

AND t2458.employee = t2456.name

) AS t2469;

Figure 5.15: Generated lineage query Q5 (part 1).
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(SELECT 5 AS "1_1", t2471."2" AS "1_2", t2471."1_2_oid" AS "2_row",
’employees’ AS "2_table"

FROM (SELECT t2429.employee AS "1_1_employee", t2429.oid AS "1_1_oid",
t2429.task AS "1_1_task", t2456.dept AS "1_2_dept",
t2456.name AS "1_2_name", t2456.oid AS "1_2_oid",
t2456.salary AS "1_2_salary", t2457.name AS "1_3_name",
t2457.oid AS "1_3_oid",
row_number() OVER (

ORDER BY t2429.oid, t2456.name, t2457.name) AS "2"
FROM tasks AS t2429, employees AS t2456, departments AS t2457

WHERE t2456.name = t2429.employee AND t2456.dept = t2457.name

) AS t2471) UNION ALL

(SELECT 5 AS "1_1", t2473."2" AS "1_2",
t2473."1_3_oid" AS "2_row", ’departments’ AS "2_table"

FROM (SELECT t2429.employee AS "1_1_employee", t2429.oid AS "1_1_oid",
t2429.task AS "1_1_task", t2456.dept AS "1_2_dept",
t2456.name AS "1_2_name", t2456.oid AS "1_2_oid",
t2456.salary AS "1_2_salary", t2457.name AS "1_3_name",
t2457.oid AS "1_3_oid", row_number() OVER (

ORDER BY t2429.oid, t2456.name, t2457.name ) AS "2"
FROM tasks AS t2429, employees AS t2456, departments AS t2457

WHERE t2456.name = t2429.employee

AND t2456.dept = t2457.name) AS t2473);

SELECT 7 AS "1_1",
t2475."2" AS "1_2",
t2475."1_1_oid" AS "2_row",
’tasks’ AS "2_table"

FROM (

SELECT t2429.employee AS "1_1_employee",
t2429.oid AS "1_1_oid",
t2429.task AS "1_1_task",
row_number() OVER (ORDER BY t2429.oid) AS "2"

FROM tasks AS t2429

) AS t2475;

Figure 5.16: Generated lineage query Q5 (part 2).
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SELECT 0 AS "1_1", t2614."2" AS "1_2", t2586.name AS "2_data_department",
9 AS "2_data_people_1",
row_number() OVER (ORDER BY t2614."2", t2586.name) AS "2_data_people_2",
9 AS "2_prov_1",
row_number() OVER (ORDER BY t2614."2", t2586.name) AS "2_prov_2"

FROM (SELECT 1 AS "2") AS t2614, departments AS t2586;

(SELECT 9 AS "1_1", t2616."2" AS "1_2", t2607.name AS "2_data_name",
4 AS "2_data_tasks_1",
row_number() OVER (ORDER BY t2616."2", t2607.name) AS "2_data_tasks_2",
4 AS "2_prov_1",
row_number() OVER (ORDER BY t2616."2", t2607.name) AS "2_prov_2"

FROM (SELECT t2586.name AS "1_1_name", t2586.oid AS "1_1_oid",
row_number() OVER (ORDER BY t2586.name) AS "2"

FROM departments AS t2586) AS t2616, employees AS t2607

WHERE t2616."1_1_name" = t2607.dept

AND (t2607.salary < (1000) OR t2607.salary > (1000000))

) UNION ALL (SELECT 9 AS "1_1", t2618."2" AS "1_2",
t2609.dept AS "2_data_name", 7 AS "2_data_tasks_1", row_number() OVER ( ORDER BY

t2618."2", t2609.name ) AS "2_data_tasks_2", 7 AS "2_prov_1", row_number() OVER

( ORDER BY t2618."2", t2609.name ) AS "2_prov_2"
FROM (SELECT t2586.name AS "1_1_name", t2586.oid AS "1_1_oid",

row_number() OVER (ORDER BY t2586.name) AS "2"
FROM departments AS t2586 ) AS t2618, contacts AS t2609

WHERE t2618."1_1_name" = t2609.dept AND t2609.client);

(SELECT 4 AS "1_1", t2620."2" AS "1_2", t2608.task AS "2_data", 2 AS "2_prov_1",
row_number() OVER (ORDER BY t2620."2", t2608.oid) AS "2_prov_2"

FROM (SELECT t2586.name AS "1_1_name", t2586.oid AS "1_1_oid",
t2607.dept AS "1_2_dept", t2607.name AS "1_2_name",
t2607.oid AS "1_2_oid", t2607.salary AS "1_2_salary",
row_number() OVER (ORDER BY t2586.name, t2607.name) AS "2"

FROM departments AS t2586, employees AS t2607

WHERE t2586.name = t2607.dept

AND (t2607.salary < (1000) OR t2607.salary > (1000000))

) AS t2620, tasks AS t2608

WHERE t2608.employee = t2620."1_2_name") UNION ALL

(SELECT 7 AS "1_1", t2622."2" AS "1_2", ’buy’ AS "2_data", 5 AS "2_prov_1",
row_number() OVER (ORDER BY t2622."2") AS "2_prov_2"

FROM (SELECT t2586.name AS "1_1_name", t2586.oid AS "1_1_oid",
t2609.client AS "1_2_client", t2609.dept AS "1_2_dept",
t2609.name AS "1_2_name", t2609.oid AS "1_2_oid",
row_number() OVER (ORDER BY t2586.name, t2609.name ) AS "2"

FROM departments AS t2586, contacts AS t2609

WHERE t2586.name = t2609.dept AND t2609.client ) AS t2622;

Figure 5.17: Generated lineage query Q6N (part 1).
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SELECT 2 AS "1_1", t2624."2" AS "1_2", t2624."1_3_oid" AS "2_row", ’tasks’ AS "2_table"
FROM (SELECT t2586.name AS "1_1_name", t2586.oid AS "1_1_oid",

t2607.dept AS "1_2_dept", t2607.name AS "1_2_name",
t2607.oid AS "1_2_oid", t2607.salary AS "1_2_salary",
t2608.employee AS "1_3_employee", t2608.oid AS "1_3_oid",
t2608.task AS "1_3_task", row_number() OVER (ORDER BY

t2586.name, t2607.name, t2608.oid) AS "2"
FROM departments AS t2586, employees AS t2607, tasks AS t2608

WHERE (t2586.name = t2607.dept AND (t2607.salary < (1000) OR

t2607.salary > (1000000))) AND t2608.employee = t2607.name

) AS t2624;

(SELECT 4 AS "1_1", t2626."2" AS "1_2", t2626."1_2_oid" AS "2_row",
’employees’ AS "2_table"

FROM (SELECT t2586.name AS "1_1_name", t2586.oid AS "1_1_oid",
t2607.dept AS "1_2_dept", t2607.name AS "1_2_name",
t2607.oid AS "1_2_oid", t2607.salary AS "1_2_salary",
row_number() OVER (ORDER BY t2586.name, t2607.name) AS "2"

FROM departments AS t2586, employees AS t2607

WHERE t2586.name = t2607.dept

AND (t2607.salary < (1000) OR t2607.salary > (1000000))

) AS t2626 ) UNION ALL

(SELECT 7 AS "1_1", t2628."2" AS "1_2",
t2628."1_2_oid" AS "2_row", ’contacts’ AS "2_table"

FROM (SELECT t2586.name AS "1_1_name", t2586.oid AS "1_1_oid",
t2609.client AS "1_2_client", t2609.dept AS "1_2_dept",
t2609.name AS "1_2_name", t2609.oid AS "1_2_oid",
row_number() OVER (

ORDER BY t2586.name, t2609.name ) AS "2"
FROM departments AS t2586, contacts AS t2609

WHERE t2586.name = t2609.dept AND t2609.client ) AS t2628);

SELECT 9 AS "1_1", t2630."2" AS "1_2", t2630."1_1_oid" AS "2_row",
’departments’ AS "2_table"

FROM (SELECT t2586.name AS "1_1_name", t2586.oid AS "1_1_oid",
row_number() OVER (ORDER BY t2586.name) AS "2"

FROM departments AS t2586 ) AS t2630;

Figure 5.18: Generated lineage query Q6N (part 2).
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SELECT 0 AS "1_1", t2512."2" AS "1_2", t2507.name AS "2_data_department",
t2510.name AS "2_data_employee_name", t2510.salary AS "2_data_employee_salary",
3 AS "2_prov_1",
row_number() OVER (ORDER BY t2512."2", t2507.name, t2510.name) AS "2_prov_2"

FROM (SELECT 1 AS "2") AS t2512, departments AS t2507, employees AS t2510

WHERE (t2507.name = t2510.dept AND t2510.salary > 1000000) OR t2510.salary < 1000;

(SELECT 3 AS "1_1", t2514."2" AS "1_2", t2514."1_1_oid" AS "2_row",
’departments’ AS "2_table"

FROM (SELECT t2507.name AS "1_1_name", t2507.oid AS "1_1_oid",
t2510.dept AS "1_2_dept", t2510.name AS "1_2_name",
t2510.oid AS "1_2_oid", t2510.salary AS "1_2_salary",
row_number() OVER (ORDER BY t2507.name, t2510.name) AS "2"

FROM departments AS t2507, employees AS t2510

WHERE (t2507.name = t2510.dept AND t2510.salary > (1000000))

OR t2510.salary < (1000)) AS t2514)

UNION ALL

(SELECT 3 AS "1_1", t2516."2" AS "1_2",
t2516."1_2_oid" AS "2_row", ’employees’ AS "2_table"

FROM (SELECT t2507.name AS "1_1_name", t2507.oid AS "1_1_oid",
t2510.dept AS "1_2_dept", t2510.name AS "1_2_name",
t2510.oid AS "1_2_oid", t2510.salary AS "1_2_salary",
row_number() OVER (

ORDER BY t2507.name, t2510.name ) AS "2"
FROM departments AS t2507, employees AS t2510

WHERE (t2507.name = t2510.dept

AND t2510.salary > (1000000)

) OR t2510.salary < (1000) ) AS t2516 );

Figure 5.19: Generated lineage query Q7.
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SELECT 0 AS "1_1", t2572."2" AS "1_2", t2543.name AS "2_data_a",
t2560.name AS "2_data_b", 7 AS "2_data_c_1", row_number() OVER ( ORDER BY

t2572."2", t2543.name, t2560.name ) AS "2_data_c_2", 7 AS "2_prov_1",
row_number() OVER (ORDER BY t2572."2", t2543.name, t2560.name) AS "2_prov_2"

FROM (SELECT 1 AS "2") AS t2572, employees AS t2543, employees AS t2560

WHERE t2543.dept = t2560.dept AND t2543.name != t2560.name;

(SELECT 7 AS "1_1", t2574."2" AS "1_2", ’a’ AS "2_data_doer",
t2567.task AS "2_data_task", 2 AS "2_prov_1",
row_number() OVER (ORDER BY t2574."2", t2567.oid) AS "2_prov_2"

FROM (SELECT t2543.dept AS "1_1_dept", t2543.name AS "1_1_name",
t2543.oid AS "1_1_oid", t2543.salary AS "1_1_salary",
t2560.dept AS "1_2_dept", t2560.name AS "1_2_name",
t2560.oid AS "1_2_oid", t2560.salary AS "1_2_salary",
row_number() OVER (ORDER BY t2543.name, t2560.name) AS "2"

FROM employees AS t2543, employees AS t2560

WHERE t2543.dept = t2560.dept AND t2543.name != t2560.name

) AS t2574, tasks AS t2567

WHERE t2574."1_1_name" = t2567.employee) UNION ALL

(SELECT 7 AS "1_1", t2576."2" AS "1_2", ’b’ AS "2_data_doer",
t2568.task AS "2_data_task", 4 AS "2_prov_1",
row_number() OVER ( ORDER BY t2576."2", t2568.oid

) AS "2_prov_2"
FROM (SELECT t2543.dept AS "1_1_dept", t2543.name AS "1_1_name",

t2543.oid AS "1_1_oid", t2543.salary AS "1_1_salary",
t2560.dept AS "1_2_dept", t2560.name AS "1_2_name",
t2560.oid AS "1_2_oid", t2560.salary AS "1_2_salary",
row_number() OVER ( ORDER BY t2543.name, t2560.name

) AS "2"
FROM employees AS t2543, employees AS t2560

WHERE t2543.dept = t2560.dept AND t2543.name != t2560.name

) AS t2576, tasks AS t2568

WHERE t2576."1_2_name" = t2568.employee);

Figure 5.20: Generated lineage query QC4 (part 1).
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(SELECT 2 AS "1_1", t2578."2" AS "1_2", t2578."1_3_oid" AS "2_row", ’tasks’ AS "2_table"
FROM (SELECT t2543.dept AS "1_1_dept", t2543.name AS "1_1_name",

t2543.oid AS "1_1_oid", t2543.salary AS "1_1_salary",
t2560.dept AS "1_2_dept", t2560.name AS "1_2_name",
t2560.oid AS "1_2_oid", t2560.salary AS "1_2_salary",
t2567.employee AS "1_3_employee", t2567.oid AS "1_3_oid",
t2567.task AS "1_3_task", row_number() OVER (

ORDER BY t2543.name, t2560.name, t2567.oid ) AS "2"
FROM employees AS t2543, employees AS t2560, tasks AS t2567

WHERE (t2543.dept = t2560.dept AND t2543.name != t2560.name)

AND t2543.name = t2567.employee ) AS t2578) UNION ALL

(SELECT 4 AS "1_1", t2580."2" AS "1_2", t2580."1_3_oid" AS "2_row", ’tasks’ AS "2_table"
FROM (SELECT t2543.dept AS "1_1_dept", t2543.name AS "1_1_name",

t2543.oid AS "1_1_oid", t2543.salary AS "1_1_salary",
t2560.dept AS "1_2_dept", t2560.name AS "1_2_name",
t2560.oid AS "1_2_oid", t2560.salary AS "1_2_salary",
t2568.employee AS "1_3_employee", t2568.oid AS "1_3_oid",
t2568.task AS "1_3_task", row_number() OVER (

ORDER BY t2543.name, t2560.name, t2568.oid ) AS "2"
FROM employees AS t2543, employees AS t2560, tasks AS t2568

WHERE (t2543.dept = t2560.dept AND t2543.name != t2560.name)

AND t2560.name = t2568.employee ) AS t2580);

(SELECT 7 AS "1_1", t2582."2" AS "1_2", t2582."1_1_oid" AS "2_row", ’employees’ AS "2_table"
FROM (SELECT t2543.dept AS "1_1_dept", t2543.name AS "1_1_name",

t2543.oid AS "1_1_oid", t2543.salary AS "1_1_salary",
t2560.dept AS "1_2_dept", t2560.name AS "1_2_name",
t2560.oid AS "1_2_oid", t2560.salary AS "1_2_salary",
row_number() OVER (ORDER BY t2543.name, t2560.name) AS "2"

FROM employees AS t2543, employees AS t2560

WHERE t2543.dept = t2560.dept AND t2543.name != t2560.name

) AS t2582 ) UNION ALL

(SELECT 7 AS "1_1", t2584."2" AS "1_2", t2584."1_2_oid" AS "2_row", ’employees’ AS "2_table"
FROM (SELECT t2543.dept AS "1_1_dept", t2543.name AS "1_1_name",

t2543.oid AS "1_1_oid", t2543.salary AS "1_1_salary",
t2560.dept AS "1_2_dept", t2560.name AS "1_2_name",
t2560.oid AS "1_2_oid", t2560.salary AS "1_2_salary",
row_number() OVER ( ORDER BY t2543.name, t2560.name ) AS "2"

FROM employees AS t2543, employees AS t2560

WHERE t2543.dept = t2560.dept AND t2543.name != t2560.name) AS t2584);

Figure 5.21: Generated lineage query QC4 (part 2).
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SELECT 0 AS "1_1", t2523."2" AS "1_2", t2518.name AS "2_data_1",
t2521.name AS "2_data_2", 3 AS "2_prov_1", row_number()

OVER (ORDER BY t2523."2", t2518.name, t2521.name) AS "2_prov_2"
FROM (SELECT 1 AS "2") AS t2523, employees AS t2518, employees AS t2521

WHERE (t2518.dept = t2521.dept AND t2518.salary = t2521.salary)

AND t2518.name != t2521.name;

(SELECT 3 AS "1_1", t2525."2" AS "1_2", t2525."1_1_oid" AS "2_row",
’employees’ AS "2_table"

FROM (SELECT t2518.dept AS "1_1_dept", t2518.name AS "1_1_name",
t2518.oid AS "1_1_oid", t2518.salary AS "1_1_salary",
t2521.dept AS "1_2_dept", t2521.name AS "1_2_name",
t2521.oid AS "1_2_oid", t2521.salary AS "1_2_salary",
row_number() OVER (ORDER BY t2518.name, t2521.name) AS "2"

FROM employees AS t2518, employees AS t2521

WHERE (t2518.dept = t2521.dept AND t2518.salary = t2521.salary)

AND t2518.name != t2521.name ) AS t2525) UNION ALL

(SELECT 3 AS "1_1", t2527."2" AS "1_2",
t2527."1_2_oid" AS "2_row", ’employees’ AS "2_table"

FROM (SELECT t2518.dept AS "1_1_dept", t2518.name AS "1_1_name",
t2518.oid AS "1_1_oid", t2518.salary AS "1_1_salary",
t2521.dept AS "1_2_dept", t2521.name AS "1_2_name",
t2521.oid AS "1_2_oid", t2521.salary AS "1_2_salary",
row_number() OVER (ORDER BY t2518.name, t2521.name) AS "2"

FROM employees AS t2518, employees AS t2521

WHERE (t2518.dept = t2521.dept AND t2518.salary = t2521.salary)

AND t2518.name != t2521.name) AS t2527);

Figure 5.22: Generated lineage query QF3.
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(SELECT 0 AS "1_1", t2535."2" AS "1_2",
t2532.employee AS "2_data", 2 AS "2_prov_1",
row_number() OVER (ORDER BY t2535."2", t2532.oid) AS "2_prov_2"

FROM (SELECT 1 AS "2") AS t2535, tasks AS t2532

WHERE t2532.task = (’abstract’))
UNION ALL

(SELECT 0 AS "1_1",
t2537."2" AS "1_2",
t2533.name AS "2_data",
4 AS "2_prov_1",
row_number() OVER (

ORDER BY t2537."2", t2533.name

) AS "2_prov_2"
FROM (SELECT 1 AS "2") AS t2537, employees AS t2533

WHERE t2533.salary > (50000));

(SELECT 2 AS "1_1", t2539."2" AS "1_2",
t2539."1_1_oid" AS "2_row", ’tasks’ AS "2_table"

FROM (SELECT t2532.employee AS "1_1_employee", t2532.oid AS "1_1_oid",
t2532.task AS "1_1_task",
row_number() OVER (ORDER BY t2532.oid) AS "2"

FROM tasks AS t2532

WHERE t2532.task = (’abstract’)) AS t2539)

UNION ALL

(SELECT 4 AS "1_1", t2541."2" AS "1_2",
t2541."1_1_oid" AS "2_row", ’employees’ AS "2_table"

FROM (SELECT t2533.dept AS "1_1_dept", t2533.name AS "1_1_name",
t2533.oid AS "1_1_oid", t2533.salary AS "1_1_salary",
row_number() OVER (ORDER BY t2533.name) AS "2"

FROM employees AS t2533

WHERE t2533.salary > (50000) ) AS t2541 );

Figure 5.23: Generated lineage query QF4.
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Figure 5.24: Lineage query runtimes.

Query #depts median runtime in ms overall slowdown
lineage nolineage (geom mean)

AQ6 1024 450 91 3.79
Q3 1024 3597 637 3.98
Q4 1024 986 117 6.66
Q5 1024 8149 6093 1.91
Q6N 1024 13007 5979 2.21
Q7 1024 861 106 5.73
QC4 32 18841 6128 1.80
QF3 1024 32498 3240 8.36
QF4 1024 584 68 7.45

Figure 5.25: Median runtimes at largest data set and geometric means of overall
slowdowns across all instance sizes.
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queries QF3 and QF4 are among the worst, while having some of the largest
and smallest execution times overall.



5.3. Comparison with Perm 105

i s cardinal ordinal

1 "1" "one" "first"
2 "2" "two" "second"
...

n "n" "en" "nth"

Figure 5.26: Synthetic taste of 64 tables with n = 104,105,106 rows each.

5.3 Comparison with Perm

In this section we compare LinksW and LinksL to Perm [Glavic and Alonso,
2009], as one instance of a database-integrated provenance system. This is very
much a comparison between apples and oranges.

The subset of queries supported by both Links variants and Perm is limited.
Most of the queries above use nested results which are not supported by Perm.
Many common flat relational queries use aggregations which are not supported
by Links. Others do not have large or interesting provenance annotations, be it
where-provenance or lineage.

For this comparison we use a synthetic test database as illustrated in Fig-
ure 5.26. We create tables of integers 1, . . . ,n for n = (10000,100000,1000000);
a simple string representation of the number; an English language cardinal
(“one”, “two”, . . . ); and an English language ordinal (“first”, “second”, . . . ).
We create 64 copies of these tables at each size n and call them i_s_c_o_n_1,
i_s_c_o_n_2, . . . . Their content is the same, but their oids are different. The
data loading scripts are 55MB, 640MB, and 7.8GB on disk.

Weuse the samemachine as before to run both databases anddatabase clients.
We used Perm version 0.1.1 which is a fork of PostgreSQL 8.3. There is a known
problem compiling PostgreSQL 8.3 with a current Gcc (6.3.1) which requires
passing -fno-aggressive-loop-optimizations. This has been fixed in
later versions of PostgreSQL. One of the advantages of language-integrated
provenance is that it works independently of the database. Links uses the
current version of PostgreSQL as its database back-end, which at the time these
benchmarks were run was PostgreSQL 9.6.3.

We measure wall clock time of single runs of a complete program. Links
executes the query and prints the result to stdout which is ignored. Printing uses
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Links’s native format with pretty printing (colors, line breaks, and indentation)
disabled. Perm queries are executed using Psql with a “harness” like this to
produce output in comma-separated value format:

\COPY (SQL query goes here) TO STDOUT WITH CSV

5.3.1 LinksW

We use a family of queries that join m = (16,32,64) of the tables described above
on their integer column and select the provenance-annotated cardinal column
for each of them. Thus, the where-provenance LinksW queries look like this:

for (t_1 <-- i_s_c_o_n_1) . . . for (t_m <-- i_s_c_o_n_m)

where (mod(t_1.i,100) < 5 && t_1.i==t_2.i && . . . && t_1.i==t_m.i)

[(c1=t_1.cardinal, c2=t_2.cardinal, . . ., cm=t_m.cardinal)]

Testing revealed that LinksW runs out of memory for the largest (n=1000000,
m=64) query when loading the results. Rather than using smaller input da-
tabases, we filtered the result using mod(t_1.i,100) < 5 as an additional
condition in the where clause.

Unfortunately, Perm’swhere-provenance support is too restrictive and refuses
to execute an equivalent query with the following error message: “WHERE-CS
only supports conjunctive equality comparisons inWHERE clause.” Fortunately,
Perm has no problems computing the full result, so we used queries of the
following form, without filtering based on t_1.i % 100 < 5.

SELECT

PROVENANCE ON CONTRIBUTION (WHERE)

t_1.cardinal AS c1, . . ., t_m.cardinal AS cm

FROM i_s_c_o_n_1 AS t_1, . . ., i_s_c_o_n_m AS t_m

WHERE t_1.i = t_2.i AND . . . AND t_1.i = t_m.i

We use variants without where-provenance of both the LinksW and Perm
queries. For the provenance-less LinksW version, we keep the table declarations
as they are, but use the data keyword to project to just the data and rely on
query normalization to not compute provenance. For the provenance-less Perm
version, we use a plain SELECTwithout the PROVENANCE clause.

Finally, we have a fifth set of queries that is just like the plain Perm queries,
but with filtering. We run these against PostgreSQL 9.6.3, the version LinksW
uses. This gives us an idea of the overhead for loading and printing incurred by
Links compared to Psql.
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Figure 5.27: Where-provenance times grouped by table size (n) and number of
tables (m). Note that wlinks and postgres queries are filtered, perm queries are
not.

The LinksW results with where-provenance enabled look something like the
following with pretty printing of provenance-annotated values disabled:

[(c1=(!data="one",!prov=("i_s_c_o_10000_1", "cardinal", 715924950)),

c2=(!data="one",!prov=("i_s_c_o_10000_2", "cardinal", 715925958)). . .). . .]

Perm uses arrays to collect annotations of equal rows. In our query, all rows
are different, so these are all singleton arrays.

c1 annot_c1 . . .

two hundred sixty-seven {public.i_s_c_o_10000_1#cardinal#114040340} . . .
three hundred seventeen {public.i_s_c_o_10000_1#cardinal#114040390} . . .
... ...

Figure 5.27 shows query runtimes in seconds grouped by size of tables (n)
and number of tables joined (m). Keep in mind that the Perm variants are
not filtered. Figure 5.28 shows the result size in megabytes at n = 1000000 for
LinksW and Permwithwhere-provenance annotations, and PostgreSQLwithout
annotations. We measure the size simply as byte count of the printed result.
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m=16 m=32 m=64

LinksW 89.2MB 179.1MB 359.1MB
Perm 1589.3MB 3187.5MB 6384.0MB
PostgreSQL 37.2MB 74.3MB 148.6MB

Figure 5.28: Result sizes at n=1000000. LinksW and Perm results are with where-
provenance annotations, PostgreSQL is without.

Looking at the runtime difference between the Perm queries without where-
provenance and the plain PostgreSQL queries we see that the result size does
not have a great impact on runtime. In general, the numbers between systems
are hard to compare, not just because of result size. We only consider one
family of highly synthetic queries and the experimental setup is not necessarily
a realistic reflection of any real-world use. However, we do observe some trends:
The runtime difference between processing 10x data (going down one row in
the graph) is larger than the difference between systems, by far. Doubling the
number of tables considered also dominates difference between systems. We
conclude that the overhead of where-provenance in both Perm and LinksW is
moderate and the systems are roughly comparable.

5.3.2 LinksL

We use the same data as before and similar queries to compare LinksL to Perm
Influence Contribution Semantics (PI-CS). Lineage and PI-CS are not equivalent in
general [Glavic, 2010], but for the queries we use here the annotations contain,
more or less, the same information.

We use a family of queries similar to those for where-provenance. Again
we join m = (16,32,64) tables, but this time we return only the first table’s
integer and English cardinal columns, and their lineage. The number of joins
is particularly interesting here because it increases the size of the provenance
metadata without affecting the actual result size.

The LinksL lineage versions of the query look like the following:
lineage {

for (t_1 <-- i_s_c_o_n_1) . . . for (t_m <-- i_s_c_o_n_m)

where (mod(t_1.i,100)<5 && t_1.i==t_2.i&&. . .&&t_(m−1).i==t_m.i)

[(i = t_1.i, c = t_1.cardinal)] }
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The plain, unannotated versions just use query in place of lineage.
The Perm versions look like the one below, with and without PROVENANCE.

Note that in this set of benchmarks the Perm queries are also filtered to 5% of
the result.

SELECT PROVENANCE t_1.i, t_1.cardinal

FROM i_s_c_o_n_1 AS t_1, . . ., i_s_c_o_n_m AS t_m

WHERE t_1.i%100<5 AND t_1.i=t_2.i AND . . . AND t_(m−1).i=t_m.i

Instead of a list of annotations per result row, Perm produces wider tables,
adding columns to identify join partners. Table rows are identified by their
whole contents, so for m = 64 joined tables we have two columns for the actual
result and 64∗4 columns of provenance metadata. The example result below is
transposed and shows the first two rows and first eight columns of the result.

i 1 2 . . .

cardinal one two . . .

prov_public_i_s_c_o_1000_1_i 1 2 . . .

prov_public_i_s_c_o_1000_1_s 1 2 . . .

prov_public_i_s_c_o_1000_1_cardinal one two . . .

prov_public_i_s_c_o_1000_1_ordinal first second . . .

prov_public_i_s_c_o_1000_2_i 1 2 . . .

prov_public_i_s_c_o_1000_2_s 1 2 . . .
... ... ...

We show query runtimes grouped by size of the tables (n) and number of
tables joined (m) in Figure 5.29. We omitted the largest LinksL query (n=1000000,
m=64); it ran for 33745 seconds, which would have distorted the graph too
much. This query just barely did not run out of memory, causing severe GC
thrashing and leaving little memory for the database server and disk caches.

These timings are whole program execution and so include pre- and post-
processing steps. LinksL is an extension of Links with minimal changes to
the parser and type checker that desugars an early syntax tree to plain Links
more or less as described in Section 4.3. This takes less than 1 millisecond
for all queries. Query normalization for the lineage queries takes around 9
milliseconds for m=16, 41 milliseconds for m=32, and 194 milliseconds for
m=64. Post-processing times (with data already in memory) range from 11
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Figure 5.29: Lineage times grouped by relation size (n) and width (m). All
queries are filtered to return only 5% of results.

milliseconds for n=10000, m=16 to almost 10 seconds for the lineage query at
n=1000000, m=64.

The queries executed by PostgreSQL are on average a bit faster than the
same queries executed by Perm. We did not investigate this further, a simple ex-
planation would be that PostgreSQL 9.6.3 is just that bit faster than PostgreSQL
8.3 which is the version Permwas forked from. Because Links works with any
recent PostgreSQL version, it is easy to take advantage of such performance
improvements in the database.

Figure 5.30 shows the result size at n = 1000000 for plain queries, and lineage
queries at m = 16 and m = 32. In some ways, the data is a worst case for Perm,
because the width of the result is so much smaller than the width of the annota-
tions. Despite that, the query execution time overhead of lineage annotations is
remarkably low in Perm.

While Perm considerably outperforms LinksL on lineage computations, their
performance on plain queries is similar, which comes as a bit of a surprise. We
expected LinksL to be a worse database client than the native Psql client, even
for flat queries. In part this is due to the experimental setup with both database
and client running on the same machine. Because LinksL uses so much memory,
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plain query lineage (m=16) lineage (m=32)

LinksL 3.1MB 38.5MB 73.7MB
Perm 2.7MB 89.4MB 176.2MB

Figure 5.30: Size of printed results at n=1000000.

there is less memory available for disk caches and the database system spends
a lot of time waiting for disk seeks. Post-processing time is low by comparison:
except for the largest queries, post-processing by LinksL is typically well below
one second.

5.4 Discussion

We discuss threats to the validity of our results and conclusions, aspects of
provenance we did not benchmark but would like to see benchmarked in the
future, benchmarks by Lee et al. [2018], and conclude that the performance of
language-integrated provenance is reasonable.

The organization database that is used in the first two sections is quite small,
even at the largest size with 4096 departments. We have addressed this concern
in part in the comparison with Perm, which uses a much larger database that
does not easily fit into memory.

The results on the other hand are perhaps unrealistically large. Query Q1, for
example, returns the whole database in a different shape. One of the envisioned
main use cases of provenance is debugging. Typically, a user would filter a query
to focus on a surprising result and thus query less provenance. Our experiments
do not measure this scenario but instead compute provenance eagerly for all
query results. Thus, the slowdown factors we obtain represent a worst case
upper bound that may not be experienced in common usage patterns.

One problem with large results is that Links’ runtime representation of
values has a large memory overhead. This is particularly problematic in our
benchmark setup because we run database and client on the same machine
where they compete for memory. In practice, for large databases we should
avoid holding the whole result in memory. (It is not entirely clear how to do
this in the presence of nested results and thus query shredding.) It could also
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be advantageous to represent provenance in a special way. There is typically a
lot of repetition in relation and column names for example.

It would be interesting to run experiments where database and client run on
different machines. LinksW and LinksL work with any PostgreSQL database2
and it would be particularly interesting to test them on a hosted service like
Amazon Rds that is tuned for performance by professionals. We are not aware
of any Perm-as-a-service offerings, but there are other provenance systems that
work with PostgreSQL (see Section 2.1.2).

The measurements in the first two sections do not include program rewriting
time. However, this time is only dependent on the lexical size of the program
and is thus fairly small and, most importantly, independent of the database size.
Since Links is interpreted, it does not really make sense to distinguish translation
time from execution time, but both the where-provenance translation and the
lineage translation could happen at compile time, leaving only slightly larger
expressions to be normalized at runtime. Across the queries in Sections 5.1 and
5.2, the largest observed time spent rewriting LinksW or LinksL to plain Links
was 5 milliseconds with an average of 0.5 milliseconds.

Our performance evaluation does not include any queries on provenance data
itself. All three of LinksW, LinksL, and Perm use a flat relational representation
of provenance3 and offload computation on provenance to the database engine,
just like computation of the query data itself. Flat relations are the bread and
butter of database systems and so we expect them to do a good job at planning
efficient queries on provenance. It would be interesting to test this hypothesis by
comparing language-integrated provenance against systems that either cannot
filter on provenance computations in the same query at all, or make heavy use
of procedural features and user-defined functions which are challenging for
query optimizers to see through. Müller et al. [2018] focus on preserving the
shape of queries when computing provenance and explicitly reject propagating
provenance together with data through the query which would make filtering
based on provenance easy. Compared to Perm they observe drastic speedups
for some queries and drastic slowdowns for others. Unfortunately, they did
not compare any queries that perform computation based on provenance —

2Query shredding relies on the existence of a database driver forLinks (currently PostgreSQL,
MySQL, and SQLite are known to work) and database support for ROW_NUMBER.

3via shredding, in the case of LinksL, but flat nonetheless
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exactly the case where we would expect the likes of LinksW, LinksL, and Perm
to perform particularly well.

The prototypes of LinksW and LinksL we benchmarked in this chapter are
based on Links and therefore on query shredding [Cheney et al., 2014c]. Stolarek
and Cheney [2018] implemented language-integrated provenance in the spirit
of LinksW and LinksL on top of the Haskell library Dsh [Ulrich and Grust,
2015]. Dsh uses a compilation strategy based on the flattening transformation
[Blelloch and Sabot, 1990] and claims to be an improvement over the previous
implementation based on loop-lifting [Giorgidze et al., 2011; Grust et al., 2010].
Stolarek and Cheney [2018] did not perform any benchmarks and there is no
direct comparison between query shredding and flattening. Nevertheless, we
would not be surprised if language-integrated query in Haskell based on Dsh
was faster than the LinksW and LinksL prototypes. If nothing else it would still
have a more compact in-memory representation of results.

Lee et al. [2018] compared Pug against LinksL using queries Q7 and QF3
from Section 5.2. They compared Pug to three versions of the LinksL queries:
(1) the whole LinksL program, including post processing the shredded query
and loading data into the in-memory representation; (2) just the Sql queries
generated by LinksL; and (3) the Sql queries generated by LinksL plus additional
joins to fetch the whole contents of the row represented by a lineage annotation,
not just table and row number. For small database instances, LinksL in all
variants performs better than Pug. Starting at 1024 departments, LinksL variant
1 is slower; variant 2 stays faster; and variant 3 is even. In general they observe
much larger LinksL post processing overheads than we did. This is likely due
to better experimental setup on a machine with 16 times more memory, which
protects the database system and its disk caches from LinksL’s excessivememory
use. For small databases, variant 2 is more than twice as fast as Pug, and at
2048 departments (the largest instance they tested) it is still 1.5 times faster,
which suggests that with a more careful implementation, language-integrated
provenance could indeed stand its ground. Pug returns thewhole row as lineage,
not just its table and row number like LinksL does. Benchmark variant 3 is an
attempt to make the results of LinksL and Pug more comparable. However, we
believe that this comparison is not quite accurate. Because annotations can come
from multiple tables, there must be as many additional joins as there are source
tables in a query. If LinksL natively used whole rows as provenance, it would
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propagate them through the query without additional joins; however, it is not
clear how to do this in a well-typed way without resorting to dependent types
to allow the result type to depend on the query structure.

The comparison of LinksL and Perm suggest that perhaps we should look
into generating more efficient queries. Currently, we use a naive translation
from LinksL to Links which relies on Links’s general purpose nested query
capabilities. Perm exploits the fact that lineage is bounded by the structure
of the query, adding just the right number of columns instead of arbitrarily
large nested data. Exposing this to the programmer would, again, require fancy
types. However, perhaps LinksL could do this internally only, post-process
the result, and return nested collections to the programmer. Similarly, should
database-integrated provenance, Perm or otherwise, ever become too fast to
compete with and be in widespread use, we can always generate queries that
use the provenance features of the underlying database, all without leaving the
comfort of writing composable queries in a type-safe programming language.

Despite all the difficulties in benchmarking, I think we can conclude that
language-integrated provenance is at least not hopelessly inefficient. Compared
to plain queries, the overhead of where-provenance in LinksW ranges from 1.3
to 2.8 and the overhead of lineage in LinksL ranges from 1.8 to 8.4. Bear in mind
that it is not at all obvious that manually written queries which compute the
same informationwould be any faster. Compared to Perm, a database-integrated
provenance system, overheads in LinksW and LinksL are bigger, but mostly not
orders of magnitude bigger. Compared to Pug, which is a middle-ware–type
system, even the naive implementation of LinksL performs quite well.



Chapter 6

LinksT — provenance through trace
analysis

A paper [Fehrenbach and Cheney, 2019] based on the main ideas in this chapter
has been accepted for publication.

Chapters 3 and 4 have shown how one could go about adding support for
where-provenance and lineage, respectively, to a programming language. This
chapter explores what features a programming language requires to support
multiple forms of provenance in the same language, possibly even in the same
query, and how programmers could define their own forms of provenance.

The high-level idea is as follows: We change database queries to compute
a trace of their execution instead of their result. Programmers can then use
ordinary functions1 to inspect query traces and extract information such as
where-provenance or lineage. As before, we use query normalization to avoid
actually constructing any intermediate trace information if the result of compos-
ing a trace analysis function with a query trace has a nested relational type.

The challenge is to find a sweet spot where traces contain enough information
to be useful, the language is powerful enough to write generic, well-typed trace
analysis functions, and at the same time simple enough to still normalize to
efficient queries.

The next section gives a high-level overview of LinksT and introduces some of
its features by example. Section 6.2 describes the syntax and semantics in detail.
Section 6.3 uses LinksT to define some trace analysis functions, including where-
provenance and lineage. Section 6.4 discusses how to turn query expressions

1We will need to add a small number of generic programming features to the language.
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into expressions that produce a trace of their own execution. Section 6.5 extends
query normalization to dealwith the newLinksT features. We have implemented
a prototype of the self-tracing transformation and normalization inHaskell and
discuss its output on some example queries in Section 6.6. We discuss related
and future work in Section 6.7.

6.1 Overview

The implementations of LinksW and LinksL are separate extensions of Links.
This does not have a deep technical reason; they could coexist in a single lan-
guage. Indeed, Stolarek and Cheney [2018] have shown how to implement both
where-provenance and lineage in Haskell using similar query transformations.
It is even conceivable to apply both transformations to the same query.2 We thus
claim that language-integrated provenance satisfies Requirement 1: “support
for different types of provenance” [Glavic et al., 2013]. However, the situation is
not ideal. Extending Links in themanner of LinksW and LinksL requires changes
to the parser, typechecker, and interpreter. This is not something regular pro-
grammers should be expected to do. The situation inHaskell is not much better.
While Stolarek and Cheney [2018] did not need to change the implementation of
Haskell, they did have to change the implementation of Dsh [Giorgidze et al.,
2011; Ulrich and Grust, 2015] to, among other things, “implement our own type
checking for some fragments of the lineage transformation”. We would much
prefer programmers be able to define their own forms of provenance without
changing the implementation of their query language (whether it is embedded
in another language or not).

LinksT takes inspiration fromwork on slicing database queries [Cheney et al.,
2014a] and (imperative) functional programs [Perera et al., 2012; Ricciotti et al.,
2017]. The common theme in this line of work is tracing execution to have
enough information to answer questions about which parts of the program are
responsible for which parts of the output. They define augmented evaluation
procedures that not only produce a value, but also a trace of the execution and
then further analyze the trace to obtain slicing information.

Recent work by Müller et al. [2018] is closely related to LinksT and in some
2Where-provenance first, then lineage, otherwise the former would try to annotate annota-

tions from the latter. The latter applies only to list constructors, which the former ignores.
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ways more advanced. The standard semantics of Sql queries is to produce a
valuewhen run on a database. Müller et al. [2018] show different interpretations
of Sql queries that produce where-provenance and lineage of a query. Unlike
in LinksT and in the slicing work, there is no single tree structured trace. They
essentially decompose the single trace into two parts: a dynamic part which
records control flow decisions the database system needs to make depending on
the data; and a static part that is just the structure of the query. Their work also
extends to Sql features like grouping and aggregation that are not implemented
in Links, let alone traced in LinksT.

In both the slicing work and the database-integrated provenance work,
queries do not have access to the trace and it is not the query language that is
used to interpret the traces. Instead, both the trace and its analysis live outside of
the program. In contrast, LinksT traces are a recursive datatype in the language
itself. We can wrap a piece of code in a trace block and get back a value — the
trace that represents the code’s execution. We can write (recursive) functions
that analyze traces and extract information, like from any other datatype. We
can even combine multiple different trace analyses.

The key constraint is designing the traces and trace analysis functions such
that when we compose analysis and tracing of some code and the result has a
query type, we can compile the code to a bounded number of Sql queries. That
is, assuming normalization terminates, which we do not prove. Queries can
be constructed at runtime to be arbitrarily large. To deal with arbitrarily large
traces, we need to write recursive trace analysis functions. Recursive functions
do not in general normalize — they may loop. We currently do not enforce
termination through means like checking syntactically for structural recursion.

The rest of this section gives a high-level overview of LinksT’s features. We
describe type-level computation, how to make term-level decisions based on
types, generic operations on records, and what traces look like by example.

6.1.1 Type functions and Typerec

Sometimes, it is useful to make decisions based on types. LinksT has two lan-
guage features to support this: Typerec on the type-level and typecase on
the term-level. Recall the lineage translation on typesLJ·K (Figure 4.2 on page 59)
that we used to define what lineage-annotated types look like: base types are
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translated to themselves, for list types we recursively translate the type argu-
ment and add the actual lineage annotations, and records are just recursively
translated. For LinksL this was implemented on the meta-level in OCaml. In
LinksT we can use Typerec to define such a traversal:

Typerec a (Bool, Int, String,

λb b’. [〈data:b’, lineage:[〈table:String, row:Int〉]〉],
λr r’. 〈r’〉)

You can read the snippet above as a fold over the type a. If a is one of Bool, Int,
or Stringwe return the same. On the second line we have a type function of
two arguments that defines what to do if a is a list type. It is called with the first
argument b bound to the element type of a and the second argument b’ bound
to the result of applying the Typerec expression recursively to the element
type of a. The result in our case is a list type where the elements are records
containing recursively traversed lineage-annotated types and a list of lineage
annotations. The third line defines another type-level function. It gets called
when a is a record type and gets passed the original row, as well as the row
obtained by recursively evaluating the Typerec expression on all field types.
In our case we want to recursively go through records, so we return a record
with row r’.

6.1.2 Type-directed programming with typecase

On the term-level we have typecase to make decisions based on types. A
typical application is overloading functions, for example for pretty printing.
Perhaps the simplest use case is to define a default value at any type, as below.

default : ∀a:Type.a
default = Λa:Type.typecase a of

Bool => false

Int => 0

String => ""
List b => []

This snippet defines default, a polymorphic value that has any type in a uni-
verse of base types and list types. It is defined as a type abstraction Λ that binds
type a and then pattern matches on the shape of a using typecase. The base
type branches return some typical default value. The list branch binds element
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type b and returns the empty list of type List b. Using this definition we have
default Int == 0 and default (List (List Bool)) == [].

In LinksT the universe of types that can be inspected by typecase addition-
ally includes record types and trace types. Ad-hoc polymorphism is generally
useful, but for us it is crucial for writing generic functions that can later be
applied to analyze traces of queries of any type. This and the next feature are
what allows us to write a trace analysis function once and then use the same
function to compute provenance of queries with any type.

6.1.3 Generic record programming

Since we want to be able to write a single trace analysis function and apply it to
a variety of queries, we need to be able to work generically with records. LinksT
supports two generic operations on records: mapping and folding.

For example, we can convert a record to a record of strings, by mapping a
polymorphic show function over it like so:

rmap show 〈a=true, b=[false]〉

with the following result: 〈a="true", b="[false]"〉.
The expression in function position, show in this case, must have the follow-

ing polymorphic function type: ∀α.α→ Fα, where F is a type-level function. In
our example, F is the constant type-level function λα : Type.String. For closed
records, the result type of a record map expression is another record type with
the type-level function F applied to the labels’ types. For open records, that is
records whose row contains a row variable ρ, we keep track of the fact that we
apply a type-level function to the labels’ types using the type-level row map
operation Rmap. Given a type-level function F and a row type R, Rmap F R

represents the row type that applies F to all of R’s labels’ types. For example,
the following types are all equivalent:

〈a: String, b: String〉
= Record (a: String, b: String)

= Record (a: (λa.String) Bool, b: (λa.String) (List Bool))

= Record (Rmap (λa.String) (a: Bool, b: List Bool))

= (λr.Record (Rmap (λa.String) r)) (a: Bool, b: List Bool)

The second generic record operation is folding. We will need this to combine
annotations from the fields of a record, for example in the lineage implementa-
tion in Section 6.3.3. For this introduction, let us assume we wanted to count the
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number of times true appears in a record. Given a polymorphic countTrue
function, we could map it over the record, and then use a record fold operation
to further reduce the resulting homogeneous record into the final sum:

rfold (+) 0 (rmap countTrue 〈a=true, b=[true, false], c=5〉)

The result of mapping is 〈a=1, b=1, c=0〉 and folding with addition and
initial accumulator 0 results in 2. As the order of labels in records is undefined,
the order of traversal by rmap and rfold is undefined too. Since we only have
pure functions in queries, the order of execution makes no difference to rmap.
When using rfold however, it is best to use a commutative combining function.

During LinksT query compilation, rmap and rfold are unrolled based on
types. This works because queries do not contain free (row) variables and all
record types that appear in a query directly are closed (they are either literal
record constructions, or come from tables which have fixed columns).

6.1.4 Traces of queries

What exactly do these traces look like? We answer this in detail in Section 6.4.
For now, let us look at a few examples. The trace of the literal 42 is Lit 42.
Lit is a constructor of the built-in type Trace. Tracing a list of literals like
[42, 43] results in a list of traces like [Lit 42, Lit 43]. And tracing a
record 〈a: true, b: 42〉 results in a record of traces 〈a: Lit true, b:

Lit 42〉 . This is perhaps the most important aspect of traces in LinksT: the
trace of a list is a list of traces and, similarly, the trace of a record is a record of
traces. Projection is not currently recorded in traces since we have not needed
it, but it would be possible to add it. For now, 〈a: true, b: 42〉.a results
in the trace Lit true. Tracing tables annotates all cells. For example, the
trace of presidents from Figure 1.1 on page 2 would look something like this
(modulo oids):

[〈nth=Cell 〈table="presidents", column="nth", row=432, data=1〉,
name=Cell 〈table="presidents", column="name", row=432,

data="George Washington"〉 〉,
...,

〈nth=Cell 〈table="presidents", column="nth", row=564, data=44〉,
name=Cell 〈table="presidents", column="name", row=564,

data="Barack Obama"〉 〉,
〈nth=Cell 〈table="presidents", column="nth", row=149, data=45〉,
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name=Cell 〈table="presidents", column="name", row=149,

data="Donald Trump"〉 〉]

That is, data from table cells is annotatedwith theCell constructorwhich carries
table name, column name, and row identifier (we use oids again) alongside
the actual data. The other Trace constructors are: Lit for values from the
query itself rather than the database; If for the result of an if-then-else

annotated with subtraces of the conditional expression and the branch taken;
For for values that were produced by a comprehension, recording a trace of
the input and the output; and traces of primitive operators like == and + that
record subtraces for their arguments.

Polymorphic operations record at which type they were applied. For exam-
ple, the trace for 5 == 7 is OpEq Int 〈left=Lit 5, right=Lit 7〉 . In
addition to the left and right subtraces, we record that in this case equality was
applied at type Int. Comprehensions are also polymorphic and record the type
of the input collection’s elements.

Figure 6.1 shows a partial trace of the larger (but really still quite small) boat
tours query. It has almost the full trace for the name field of the first result row.
We see how nested for comprehensions lead to nested For trace constructors,
and nested comparisons in the conditional expression lead to nested OpAnd and
OpEq traces. Note that this is for illustration purposes only. We do not intend to
ever actually construct the whole trace. We expect to compose the self-tracing
query with a trace analysis function and evaluate away all trace constructors
during query normalization.

We use tracecase to pattern match, or rather case split, on trace construc-
tors. The branches for For and OpEq bind an additional type variable. For
example, the snippet below would evaluate to f Int (Lit 5):

tracecase OpEq Int 〈left=Lit 5, right=Lit 6〉 of

Lit x => ...

If x => ...

For a x => ...

Cell x => ...

OpEq a x => f a x.left

OpPlus x => ...

This concludes the informal overview of LinksT features. The next sections
describe the syntax and static semantics of LinksT, including normalization
to nested relational calculus, and the self-tracing transformation. If you are
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[〈name=
For〈in=〈name=Cell〈table="agencies", column="name",

row=?, data="EdinTours"〉,
phone=Cell〈table="agencies", column="phone",

row=?, data="4121200"〉,
based_in=Cell〈table="agencies", column="based_in",

row=?, data="Edinburgh"〉 〉,
out=

For〈in=〈type=Cell〈table="externalTours", column="type",
row=?, data="boat"〉,

name=...,

price=...,

destination=...〉,
out=

If〈cond=OpAnd〈left=
OpEq String 〈left=Cell〈table="agencies",

column="name",
row=?,

data="EdinTours"〉,
right=Cell〈table="externalTours",

column="name",
row=?, data="EdinTours"〉 〉,

right=

OpEq String 〈left=Cell〈table="externalTours",
column="type",
row=?, data="boat"〉,

right=Lit "boat"〉 〉,
branch=Cell〈table="agencies", column="name",

row=?, data="EdinTours"〉 〉 〉 〉
phone=...〉,
〈name=..., phone=...〉,
...]

Figure 6.1: Partial trace of the boat tours query.
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inclined to skip the technical details for now, Section 6.3 shows LinksT in action.
There we define trace analysis functions to extract provenance from traces.

6.2 Syntax & semantics

LinksT is meant to eventually be implemented as an extension to Links. However,
the language design described here is more closely based on λML

i , a core calculus
devised by Harper andMorrisett [1995]. This presentation of the typing rules in
particular is based on a later presentation of λML

i by Crary et al. [2002]. We mod-
ify the core of λML

i to accommodate Links features like row types, records, and
lists. To simplify the presentation, LinksT is entirely pure but we imagine that an
eventual implementation would use effect types much as Links does [Lindley
and Cheney, 2012] to distinguish database-executable query expressions from
other programs.

The syntax of LinksT is shown in Figure 6.2. We use a unified context Γ,
mapping type variables x to types A and type variables α to kinds K. Kinds
include Type and BaseType, as well as Row and BaseRow, a row of base types.
Row constructors S include row variables ρ. We follow convention in using ρ

for row variables, but they really are just type variables with kind Row.
LinksT, like λML

i , has two syntactic categories for type-like things: types A and
constructors C. Types are what we usually understand as types, they categorize
values. Constructors are where type-level computation happens and they can
be inspected by terms like typecase, whereas types cannot be inspected.

Types, unsurprisingly, contain base types, function types, list and record
types. For the sake of brevity, we will often write [A] for List A and 〈R〉 for
Record R. In rules, we will also use the shorthand syntax typecase C of

(MB, MI,MS,β.ML,ρ.MR,β.MT ) for
typecase C of

Bool => MB

Int => MI

String => MS

List β => ML

Record ρ => MR

Trace β => MT

and similarly tracecase M of (x.ML,x.MI,α.x.MF ,x.MC,α.x.ME ,x.MP) for
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Contexts Γ ::= · | Γ,α : K | Γ,x : A

Kinds K ::= Type | BaseType | Row | BaseRow | K1→ K2

Constructors C,D ::= Bool∗ | Int∗ | String∗ | α | λα : K.C |C D

| List∗ C | Record∗ S | Trace∗ C

| Typerec C (CB,CI ,CS,CL,CR,CT )

Row constr. S ::= · | lP : C;S | ρ | Rmap C S

Types A,B ::= T(C) | Bool | Int | String | A→ B

| List A | Record R | Trace A | ∀α : K.A

Row types R ::= · | lP : A;R

Presence types P ::= ◦ | •

Terms L,M,N ::= c | x | λx : A.M |M N | Λα : K.M |M C

| fix f : A.M | if L then M else N |M+N |M == N

| 〈〉 | 〈l = M;N〉 |M.l | rmapS L M | rfoldS L M N

| [] | [M] |M++N | for (x←M) N | table n 〈R〉
| Lit M | If M | ForC M | Cell M | OpEqC M | OpPlus M

| tracecase M of (x.ML,x.MI ,α.x.MF ,x.MC,α.x.ME ,x.MP)

| typecase C of (MB,MI ,MS,β.ML,ρ.MR,β.MT )

Figure 6.2: The syntax of LinksT.

tracecase M of

Lit x => ML

If x => MI

For α x => MF

Cell x => MC

OpEq α x => ME

OpPlus x => MP

Note that typecase takes extra arguments to deal with records and traces
compared to the feature preview in Section 6.1.2.

The type T(C) in essence allows us to go from constructors to types. Con-
structors duplicate some types, but not all, and add some type-level computation
constructs. We have base constructors, lists and records, which are all marked
by a star that we will frequently omit if it does not matter whether we use a
type or constructor or it is clear from the context. LinksT, unlike λML

i , does not
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· is well-formed
Γ ` A : Type x /∈Dom(Γ)

Γ,x : A is well-formed
Γ is well-formed α /∈Dom(Γ)

Γ,α : K is well-formed

Figure 6.3: Well-formed contexts Γ.

have a constructor for function types because we do not need it in queries—our
main focus. A type variable is a constructor, introduced either by a polymorphic
type, see above, or by a type-level function. Constructors also contain type-
level function application and Typerec. Compared to the feature preview in
Section 6.1.1, Typerec takes extra arguments for record and trace types.

Terms are mostly standard. Constants c are Boolean, number, and string
literals. Functions and term-level type abstraction are unary. We only list the
operators + and ==, other standard operators work similarly. Records arewritten
in angle brackets, as are record types. Record map and record fold take a row
constructor S as an argument. We write this in superscript to indicate that
the generic record operations are specialized by that row, see Section 6.5 for
details. The first term argument to rmap and rfold is a function. The last
term argument is a record whose row matches the superscript. The middle
argument to rfold is the initial accumulator. The constructors Lit, If, For,
etc. belong to the Trace type. The trace constructors For and OpEq carry not
only a subtrace, but also a type constructor. The LinksT core language does not
have variants, at this time.

Figure 6.3 defines well-formed, unified contexts Γ as partial maps from term
variables to types and from type variables to kinds. Figure 6.4 shows the kinding
rules for constructors and rows of constructors. Similarly, Figure 6.5 shows the
kinding rules for types and row types. Morally, BaseType is a subkind of Type
and BaseRow, a row of base types, is a subkind of Row. We leave the subkinding
relation implicit and mostly just use BaseType as a hint, like in the kinding rule
for Trace∗.

Constructors are equivalent according the rules in Figure 6.7 with type-level
computation defined by the rules in Figure 6.6. Type-level computations include
application of type-level functions, mapping of type-level functions over rows
using Rmap, and folding over types using Typerec. The rules do not enforce
any particular evaluation order and may reduce nondeterministically anywhere



126 Chapter 6. LinksT — provenance through trace analysis

Γ well-formed
Γ ` Bool∗ : BaseType

Γ well-formed
Γ ` Int∗ : BaseType

Γ well-formed
Γ ` String∗ : BaseType

Γ(α) = K

Γ ` α : K

Γ,α : K1 `C : K2

Γ ` λα : K1.C : K1→ K2

Γ `C : K1→ K2 Γ ` D : K1

Γ `C D : K2

Γ `C : Type
Γ ` List∗ C : Type

Γ ` S : Row
Γ ` Record∗ S : Type

Γ `C : BaseType
Γ ` Trace∗ C : Type

Γ `C : Type Γ `CB : K Γ `CI : K Γ `CS : K

Γ `CL : Type→ K→ K Γ `CR : Row→ Row→ K Γ `CT : BaseType→ K→ K

Γ ` Typerec C (CB,CI ,CS,CL,CR,CT ) : K

Γ well-formed
Γ ` · : Row

Γ `C : Type Γ ` S : Row
Γ ` lP : C;S : Row

Γ `C : Type→ Type Γ ` S : Row
Γ ` Rmap C S : Row

Figure 6.4: Constructor and row constructor kinding.

Γ `C : Type
Γ ` T(C) : Type

Γ well-formed
Γ ` Bool : BaseType

Γ well-formed
Γ ` Int : BaseType

Γ well-formed
Γ ` String : BaseType

Γ ` A : BaseType
Γ ` A : Type

Γ,α : K ` A : Type α /∈Dom(Γ)

Γ ` ∀α : K.A : Type
Γ ` A : Type Γ ` B : Type

Γ ` A→ B : Type

Γ ` A : Type
Γ ` List A : Type

Γ ` R : Row
Γ ` Record R : Type

Γ ` A : BaseType
Γ ` Trace A : Type

Γ ` S : Row
Γ ` T(S) : Row

Γ well-formed
Γ ` · : Row

Γ ` A : Type Γ ` R : Row
Γ ` lP : A;R : Row

Figure 6.5: Type and row type kinding.
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S ; S′⇒ lP : C;S ; lP : C;S′

C ; C′⇒ lP : C;S ; lP : C′;S

C ; C′⇒C D ; C′ D

D ; D′⇒C D ; C D′

(λα : K.C) D ; C[α := D]

C ; C′⇒ λα : K.C ; λα : K.C′

C ; C′⇒ List∗ C ; List∗ C′

C ; C′⇒ Trace∗ C ; Trace∗ C′

S ; S′⇒ Record∗ S ; Record∗ S′

Rmap C ·; ·

Rmap C (lP : D;S) ; (lP : C D;Rmap C S)

S ; S′⇒ Rmap C S ; Rmap C S′

C ; C′⇒ Rmap C S ; Rmap C′ S

C ; C′⇒ Typerec C (CB,CI ,CS,CL,CR,CT ) ; Typerec C′ (CB,CI ,CS,CL,CR,CT )

CB ; C′B⇒ Typerec C (CB,CI ,CS,CL,CR,CT ) ; Typerec C (C′B,CI ,CS,CL,CR,CT )

...
Typerec Bool∗ (CB,CI ,CS,CL,CR,CT ) ; CB

Typerec Int∗ (CB,CI ,CS,CL,CR,CT ) ; CI

Typerec String∗ (CB,CI ,CS,CL,CR,CT ) ; CS

Typerec List∗ D (CB,CI ,CS,CL,CR,CT ) ; CL D (Typerec D (CB,CI ,CS,CL,CR,CT ))

Typerec Record∗ S (CB,CI ,CS,CL,CR,CT ) ; CR S (Rmap (λα.Typerec α (CB,CI ,CS,CL,CR,CT )) S)

Typerec Trace∗ D (CB,CI ,CS,CL,CR,CT ) ; CT D (Typerec D (CB,CI ,CS,CL,CR,CT ))

Figure 6.6: Constructor and row constructor computation.
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Γ `C : K

Γ `C =C : K

Γ ` D =C : K

Γ `C = D : K

Γ `C =C′ : K Γ `C′ =C′′ : K

Γ `C =C′′ : K

Γ `C : K→ K′

Γ ` λα : K.C α =C : K→ K′
Γ,α : K `C = D : K′ α /∈Dom(Γ)

Γ ` λα : K.C = λα : K.D : K→ K′

Γ `C =C′ : K′→ K Γ ` D = D′ : K′

Γ `C D =C′ D′ : K

Γ `C = D : K

Γ ` List∗ C = List∗ D : K

Γ ` S = S′ : K

Γ ` Record∗ S = Record∗ S′ : K

Γ `C = D : K

Γ ` Trace∗ C = Trace∗ D : K

Γ `C : K Γ ` D : K C ; D

Γ `C = D : K

Γ well-formed
Γ ` ·= · : Row

Γ `C = D : Type Γ ` S = S′ : Row
Γ ` (lP : C;S) = (lP : D;S′) : Row

Γ `C = D : Type→ Type Γ ` S = S′ : Row
Γ ` Rmap C S = Rmap D S′ : Row

Γ `C =C′ : K

Γ `CB =C′B : K Γ `CI =C′I : K Γ `CS =C′S : K Γ `CL =C′L : Type→ K→ K

Γ `CR =C′R : Row→ Row→ K Γ `CT =C′T : BaseType→ K→ K

Γ ` Typerec C (CB,CI ,CS,CL,CR,CT ) = Typerec C′ (C′B,C
′
I ,C
′
S,C
′
L,C

′
R,C

′
T ) : K

Figure 6.7: Constructor and row constructor equivalence.
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Γ ` A : K

Γ ` A = A : K

Γ ` B = A : K

Γ ` A = B : K

Γ ` A = A′ : K Γ ` A′ = A′′ : K

Γ ` A = A′′ : K

Γ well-formed
Γ ` T(Bool∗) = Bool : BaseType

Γ well-formed
Γ ` T(Int∗) = Int : BaseType

Γ well-formed
Γ ` T(String∗) = String : BaseType

Γ `C : Type
Γ ` T(List∗ C) = List T(C) : Type

Γ ` S : Row
Γ ` T(Record∗ S) = Record T(S) : Type

Γ `C : BaseType
Γ ` T(Trace∗ C) = Trace T(C) : Type

Γ ` T (·) = · : Row
Γ `C : Type Γ ` S : Row

Γ ` T (lP : C;S) = (lP : T (C);T (S)) : Row
Γ `C = D : Type

Γ ` T(C) = T(D) : Type

Γ ` S = S′ : Row
Γ ` T(S) = T(S′) : Row

Γ ` A = B : Type
Γ ` List A = List B : Type

Γ ` R = R′ : Row
Γ ` Record R = Record R′ : Type

Γ ` A = B : BaseType
Γ ` Trace A = Trace B : Type

Γ ` A = A′ : Type Γ ` B = B′ : Type
Γ ` A→ B = A′→ B′ : Type

Γ ` A = B : Type
Γ ` ∀α.A = ∀α.B : Type

Γ well-formed
Γ ` ·= · : Row

Γ ` A = B : Type Γ ` R = R′ : Row
Γ ` (lP : A;R) = (lP : B;R′) : Row

Figure 6.8: Type and row type equivalence.

inside a term. Note also that type equality is symmetric so we can go, for
example, from α to (λα.α) α by symmetry and the type application β-rule.

Type equivalence is defined by the rules in Figure 6.8. There is no type-level
computation in types, it all happens in constructors, but the equivalence rules
for type T(C) show that the results of type-level computations have equivalents
in types. Note how unfinished type-level computations, in particular all the left-
hand sides in Figure 6.6, and type-level computations stuck on type variables
are not equivalent to any type.

The typing rules for terms are listed in Figure 6.9. We assume a signature Σ

that contains the types of constants c. Unlike in Links, we do not treat primitive
operators like + as constants. We list explicit typing rules for + and == as
representative examples (one monomorphic, one polymorphic) of the other
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Σ(c) = A

Γ ` c : A

Γ(x) = A

Γ ` x : A

Γ ` A : Type Γ,x : A `M : B x /∈Dom(Γ)

Γ ` λx : A.M : A→ B

Γ `M : A→ B Γ ` N : A

Γ `M N : B

Γ,α : K `M : A α /∈Dom(Γ)

Γ ` Λα : K.M : ∀α : K.A

Γ `M : ∀α : K.A Γ `C : K

Γ `M C : A[α :=C]

Γ ` A Γ, f : A `M : A

Γ ` fix f : A.M : A

Γ ` L : Bool Γ `M : A Γ ` N : A

Γ ` if L then M else N : A

Γ `M : Int Γ ` N : Int

Γ `M+N : Int

Γ `M : A Γ ` N : A Γ ` A : BaseType
Γ `M == N : Bool

· ` (oid : Int,R) : BaseRow
Γ ` table n 〈oid : Int,R〉 : List〈oid : Int,R〉

Γ ` A : Type
Γ ` [] : List A

Γ `M : A

Γ ` [M] : List A

Γ `M : List A Γ ` N : List A

Γ `M++N : List A

Γ `M : List A Γ,x : A ` N : List B

Γ ` for (x←M) N : List B

Γ well-formed
Γ ` 〈〉 : Record ()

Γ `M : A Γ ` N : Record (l◦ : B;R)

Γ ` 〈l = M;N〉 : Record (l• : A;R)

Γ `M : Record (l• : A;R)

Γ `M.l : A

Γ `M : B Γ ` A = B

Γ `M : A

Γ `M : ∀α : Type.T(α)→ T(C α) Γ ` N : T(Record∗ S)

Γ ` rmapS M N : T(Record∗ (Rmap C S))

Γ ` L : T(C)→ T(C)→ T(C) Γ `M : T(C) Γ ` N : T(Record∗ (Rmap (λα.α→C) S))

Γ ` rfoldS L M N : T(C)

Γ `C : Type Γ,α : Type ` B : Type β,ρ,γ /∈Dom(Γ) Γ `MB : B[α := Bool∗]

Γ `MI : B[α := Int∗] Γ `MS : B[α := String∗] Γ,β : Type `ML : B[α := List∗ β]

Γ,ρ : Row `MR : B[α := Record∗ ρ] Γ,γ : BaseType `MT : B[α := Trace∗ γ]

Γ ` typecase C of (MB,MI ,MS,β.ML,ρ.MR,γ.MT ) : B[α :=C]

Figure 6.9: Term formation Γ `M : A.
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Γ ` c : Bool

Γ ` Lit c : Trace Bool

Γ ` c : Int

Γ ` Lit c : Trace Int

Γ ` c : String

Γ ` Lit c : Trace String

Γ `M : 〈cond : Trace Bool,out : Trace A〉

Γ ` If M : Trace A

Γ `C : Type Γ `M : 〈in : T(TRACEC),out : Trace A〉

Γ ` ForC M : Trace A

Γ `M : 〈table : String,column : String, row : Int,data : A〉

Γ ` Cell M : Trace A

Γ `C : BaseType Γ `M : 〈left : T(TRACEC), right : T(TRACEC)〉

Γ ` OpEqC M : Trace Bool

Γ `M : 〈left : Trace Int, right : Trace Int〉

Γ ` OpPlus M : Trace Int

Γ `M : Trace A Γ,xL : A `ML : B Γ,xI : 〈cond : Trace Bool, then : Trace A〉 `MI : B

Γ,αF : Type,xF : 〈in : T(TRACE αF),out : Trace A〉 `MF : B

Γ,xC : 〈table : String,column : String, row : Int,data : A〉 `MC : B

Γ,αE : BaseType,xE : 〈left : T(TRACE αE), right : T(TRACE αE)〉 `ME : B

Γ,xP : 〈left : Trace Int, right : Trace Int〉 `MP : B

Γ ` tracecase M of (xL.ML,xI .MI ,αF .xF .MF ,xC.MC,αE .xE .ME ,xP.MP) : B

Figure 6.10: Trace introduction and elimination rules.
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arithmetic and relational operators. The rule for tables enforces that every table
has an oid column. There is no separate type for tables, instead tables just have
an appropriate list type. Unlike in Links, we do not distinguish comprehensions
over tables and lists syntactically. The typing rules for rmap and rfold enforce
that the annotated row constructor S matches the record type. The record fold
rule additionally enforces that the record is homogeneous by requiring an Rmap

type with a constant function.
The typing rules for Trace introduction and elimination in Figure 6.10

make use of the type-level function TRACE as defined in Figure 6.15. The TRACE
function takes any query type and replaces all base types by their traced version.
We list rules for the operators + and == only. OpPlus serves as an example for
the other monomorphic operators. OpEq similarly serves as an example for the
other polymorphic operators.

Type-checking of λML
i is decidable [Crary et al., 2002; Morrisett, 1995]. We

believe type-checking of LinksT is decidable, too. Type inference is an issue.
Ur/Web has generic record programming features that make type inference
undecidable in general, but Chlipala [2010] claims their heuristics make it still
usable in practice. Maybe something similar would work for LinksT.

6.3 Recovering provenance from traces

In this sectionwe demonstrate how to use LinksT towrite trace analysis functions
that extract provenance from traces. We start with the value function, which
extracts the plain, unannotated value from a trace, then move on to where-
provenance (Section 6.3.2) and lineage (Section 6.3.3).

6.3.1 Value

Eventually I came to regard
nondeterminacy as the normal
situation, determinacy being
reduced to a —not even very
interesting— special case.

E. W. Dijkstra
A Discipline of Programming, 1976, page xv
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The purpose of tracing queries is to extract provenance. However, we can use the
same mechanism to extract the original values from a trace. Basically, applying
the value trace analysis function to the trace of a query Q should have the same
result as Q itself without any tracing.

On the level of types we have that tracing a query Q of type C results in a
trace of type TRACE C. The type-level function VALUE in Figure 6.12 undoes
what TRACE does. On base types it is the identity; on list and record types it
recursively applies itself to element and field types; and on trace types it removes
the type constructor Trace. In other words VALUE is the left inverse of TRACE
on nested relational query types.

Lemma 6.11. For all query type constructorsC and row constructors S and well-formed
contexts Γ:

Γ ` VALUE(TRACE C) =C

and
Γ ` Rmap VALUE (Rmap TRACE S) = S

Proof. By induction on query types C and closed rows of query types S.

• Base types Bool∗, Int∗, String∗:

VALUE(TRACE Bool∗) = VALUE(Trace Bool∗) = Bool∗

• List types List∗ D:

VALUE(TRACE (List∗ D)) = VALUE(List∗ (TRACE D))

= List∗ (VALUE(TRACE D))

= List∗ D

• Record types Record∗ S:

VALUE(TRACE (Record∗ S)) = VALUE(Record∗(Rmap TRACE S))

= Record∗ (Rmap VALUE (Rmap TRACE S))

= Record∗ S

• Empty row ·: Rmap VALUE (Rmap TRACE ·) = ·
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VALUE = λa:Type.Typerec a (Bool, Int, String,

λ_ b.List b, λ_ r.Record r, λc _.c)

value : ∀a.T(a) -> T(VALUE a)

value = fix (value: ∀a.T(a) -> T(VALUE a)).Λa:Type.

typecase a of

Bool => λx:Bool.x

Int => λx:Int.x

String => λx:String.x

List b => λx:List b.for (y <- x) [value b y]

Record r => λx:Record r.rmapr value x

Trace b => λx:Trace b.tracecase x of

Lit y => y

If y => value (Trace b) y.out

For c y => value (Trace b) y.out

Cell y => y.data

OpPlus y => value (Trace Int) y.left +

value (Trace Int) y.right

OpEq c y => value (TRACE c) y.left ==

value (TRACE c) y.right

Figure 6.12: The value trace analysis function and VALUE type-level function.

• Row cons (l : A,S):

Rmap VALUE (Rmap TRACE (l : A,S))

=Rmap VALUE (l : TRACE A,Rmap TRACE S)

=(l : VALUE (TRACE A),Rmap VALUE (Rmap TRACE S))

=(l : A,Rmap VALUE (Rmap TRACE S))

=(l : A,S)

The value function is shown in Figure 6.12. It has the polymorphic type
∀a.a -> VALUE a. Thus, when we apply it to the type TRACE C we get a
function from TRACE C to VALUE (TRACE C) which is the same as C, exactly
as expected.

The implementation of value is by typecase. For the base types nothing
needs to be done and value behaves like the identity. In fact, when value is
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applied to a trace generated by LinksT, these cases will never be encountered.
To obtain a list of values from a list of bs we traverse the list using a for compre-
hension and recursively call the value function at the element type b. Similarly
for records we map the value function over the record fields. This is where
the first of the generic record programming features of LinksT comes in. The
new keyword rmap calls value with the type and value of every field in the
record x and collects the result in a new record. Upon reaching an actual trace
we case-split on the constructor using tracecase. Literals carry their value
directly. If and For nodes both carry a subtrace of the same type so we recur-
sively call value on that. A database Cell carries its value in the data field.
Finally, the various operator traces carry subtraces on which we recursively call
value and then combine the results using the appropriate operator.

The value function is structurally recursive.

6.3.2 Where-provenance

This section describes how to extract where-provenance from a trace. With
LinksW we explored type system extensions to make handling where-prove-
nance safer and give static guarantees about the presence of useful annotations.
Here we use a more traditional approach in which where-provenance annota-
tions are just more data, like lineage in LinksL.

We replace every cell in the output with a record of the original data as well
as table, column, and row number. On the type-level this is done by WHERE
defined in Figure 6.13. Base types in the result are replaced by record types
using the helper function W. Like in VALUE before, lists and records are just
traversed recursively. Traces are replaced by W. For example:

WHERE (TRACE [〈a: Int, b: [String]〉])
= WHERE [〈a: Trace Int, b: [Trace String]〉]
= [〈a: W Int, b: [W String]〉]
= [〈a: 〈data: Int, table:String, column:String, row:Int〉,

b: [〈data: String, table:String, column:String, row:Int〉]〉]

The trace analysis function wherep itself is defined in Figure 6.13 and has
type ∀a.T(TRACE a) -> T(WHERE a). The overall structure is much the
same as the value function before: we define a recursive, polymorphic function
by cases on the argument type. The base cases are unreachable because a trace
will always have leaves of Trace types, see Lemma 6.16. Therefore it does not
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W = λa:Type.〈data:a, table:String, column:String, row:Int〉

WHERE = λa:Type.Typerec a (W Bool, W Int, W String,

λ_ b.List b, λ_ r.Record r, λ_ b.b)

wherep : ∀a.T(TRACE a) -> T(WHERE a)

wherep = fix (wherep:∀a.T(TRACE a) -> T(WHERE a)).Λa:Type.

typecase a of

Bool => fake Bool

Int => fake Int

String => fake String

List b => λxs.for (x <- xs) [wherep b x]

Record r => λx.rmapr wherep x

Trace b => λx.tracecase x of

Lit y => fake b y

If y => wherep (Trace b) y.out

For c y => wherep (Trace b) y.out

Cell y => y

OpPlus y => fake Int (value (Trace Int) y.left +

value (Trace Int) y.right)

OpEq c y => fake Bool (value (TRACE c) y.left ==

value (TRACE c) y.right)

fake : ∀a.T(a) -> T(W a)

fake = Λa:Type.λx:T(a).〈data = x, table = "facts",
column = "alternative", row = -1〉

Figure 6.13: The wherep trace analysis function and supporting definitions.
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matter what the implementation is, as long as it typechecks. The helper function
fake annotates a value with a fake annotation—something like ⊥. For lists and
records we map wherep over the elements and fields, respectively. Traces of
literals are annotated with a fake annotation to indicate that they do not come
from the database. As before, the cases for If and For annotate their output.
The case for a database cell is the most important, yet trivial: The Cell trace
constructor already carries value and where-provenance in exactly the right
format, so we just return it. Finally, the operators use the value function to
compute values from subtraces, perform the appropriate operation and annotate
the result with a fake annotation.

This implementation demonstrates that it is possible to compute where-
provenance using this tracing approach. It is easy to see how we could use
LinksT to implement further variants of where-provenance at least as flexible
as the limited user-defined annotations in LinksW. It is not at all clear how to
recover the strong typing discipline for provenance annotations that LinksW
provides. We currently do not have a proof that the annotations are the same
as those that LinksW would have produced. We tested a number of small
examples and so far the generated queries look very similar, see Section 6.6 for
one example.

6.3.3 Lineage

As far as possible, this implementation of lineage aims to emulate the behavior
of LinksL as described in Chapter 4. This is slightly challenging, because lineage
annotations in LinksL are on rows (or more generally, list elements) but tracing
information in LinksT is on cells. We need to collect annotations from the leaves
and pull them up to the nearest enclosing list constructor.

On the type-level, we have the LINEAGE function as defined in Figure 6.14.
The purpose of LINEAGE is the same as that of the lineage type translation L

from Chapter 4 defined in Figure 4.2 on page 59. Given a query type it places
an annotation on every list element type. For example:

LINEAGE [〈a: [Int]〉]
= [L 〈a: [L Int]〉]
= [〈data: 〈a: [〈data: Int,

lineage: [〈table: String, row: Int〉]〉]〉,
lineage: [〈table: String, row: Int〉]〉]
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We have ∀α : Type.LINEAGE (TRACE α) = LINEAGE α. The only interesting
case is the one for record types, where we apply the induction hypothesis on
the composition of type functions in a row map operation on a smaller type ρ:
Rmap (LINEAGE ·TRACE) ρ = Rmap LINEAGE ρ.

On the value-level the implementation is split into two functions: lineage
and linnotation, as shown in Figure 6.14. The lineage functionmatches on
the type of its argument andmakes (recursive) calls tolineage, linnotation,
and value as appropriate. The linnotation function does the actual work
of computing lineage annotations from traces. It assigns an empty list of anno-
tations to base types (again, these are unreachable for traced queries). The case
for lists concatenates the lineage annotations obtained by calling linnotation
on the list elements. The case for records does the same, but in a slightly more
roundabout way: We first use rmap to map linnotation over the record,
then we use rfold to flatten the record of lists of lineage annotations into a
single list.3 Trace constructors have lineage annotations as follows. Literals
do not have lineage. Conditional expressions have the lineage of their result.
Comprehensions are the interesting case, where we combine lineage annotations
from the input with lineage annotations from the output. Each table cell has the
expected initial singleton annotation consisting of its table’s name and its row
number. Finally, the operators just collect their arguments’ annotations.

There is an issue with this implementation of lineage: we collect duplicate
annotations. Consider the following query:

for (x <- table "xs" 〈a: Int, b: Bool, c: String〉) [x.a]

We just project a table to one of its columns. The lineage of every element of the
result should be one of the rows in the table. If we apply the lineage trace
analysis function to the trace of the above query (at the appropriate type) and
normalize, we get this query expression:

for (x <- table "xs" 〈a: Int, b: Bool, c: String〉)
[〈data = x.a,

lineage = [〈table = "xs", row = x.oid〉] ++

[〈table = "xs", row = x.oid〉] ++

[〈table = "xs", row = x.oid〉] ++

[〈table = "xs", row = x.oid〉]〉]

3The attentive reader might remember that we previously pointed out that it is best to use a
commutative combining function in rfold because record labels are unordered. Here we use
list concatenation which is decidedly non-commutative. More on this in a bit.
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L = λa:Type.〈data: a, lineage: [〈table: String, row: Int〉 〉

LINEAGE = λa:Type.Typerec a (Bool, Int, String,

λ_ b.List (L b), λ_ r.Record r, λ_ b.b)

lineage : ∀a.T(TRACE a) -> T(LINEAGE a)

lineage = fix (lineage:∀a.T(TRACE a) -> T(LINEAGE a)).Λa:Type.

typecase a of

Bool => id a -- unreachable

Int => id a -- unreachable

String => id a -- unreachable

List b => λts.for (t <- ts)

[〈data = lineage b t,

lineage = linnotation b t〉]
Record r => λx.rmapr lineage x

Trace b => λx.value (Trace b) x

linnotation : ∀a.T(TRACE a) -> [〈table: String, row: Int〉]
linnotation = fix linnotation.Λa:Type.

typecase a of

Bool | Int | String => λ_.[] -- unreachable

List b => λts.for (t <- ts) linnotation b t

Record r => λx.rfoldRmap (λ_.[〈table:String, row:Int〉]) r (++) []

(rmapr linnotation x)

Trace b => λt.tracecase t of

Lit c => []

If i => linnotation (TRACE b) i.out

For c f => linnotation (TRACE c) f.in ++

linnotation (TRACE b) f.out

Cell r => [〈table = r.table, row = r.row〉]
OpEq c e => linnotation (TRACE c) e.left ++

linnotation (TRACE c) e.right

OpPlus p => linnotation (TRACE Int) p.left ++

linnotation (TRACE Int) p.right

Figure 6.14: The lineage trace analysis function and supporting definitions.
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The lineage is correct, but there is too much of it. Instead of having one an-
notation with table and row, we have the same annotation four times. In fact,
a similar query on a table with n columns, would produce n+ 1 annotations.
Looking at the (normalized) traced expression below, we can see the problem.

for (x <- table "xs" 〈a: Int, b: Bool, c: String〉)
[For 〈in=〈a=Row 〈table="xs", column="a", row=x.oid, data=x.a〉,

b=Row 〈table="xs", column="b", row=x.oid, data=x.b〉,
c=Row 〈table="xs", column="c", row=x.oid, data=x.c〉 〉,

out=Row 〈table="xs", column="a", row=x.oid, data=x.a〉 〉]

The record case combines the annotations from all of the fields, which interacts
badly with the tracing of tables, which puts annotations on all of the fields. Our
definition of lineage from Chapter 4 is really about rows, not cells. This clashes
with our traces, which are on cells, not rows. There are at least two solutions
to this problem that preserve tracing at the level of cells. The ad-hoc solution
is not optimal in general, but would be sufficient here, and maybe other cases:
We could introduce a set union operator M∪N with a special normalization
rule that reduces to just M if M and N are known to be equal statically, at query
normalization time. In the example above we would only need to test alpha
equivalence, but other queries and other forms of provenance might require
more sophisticated analysis for determining duplicates. The proper solution
would be to support set and multiset semantics for different portions of the
same query and generate Sql queries that eliminate duplicates where necessary.

6.3.4 Other forms of provenance

Following the same approach, it should be possible to implement other forms
of provenance based on annotation propagation, such as the cell-level lineage of
Müller et al. [2018]. Dependency provenance [Cheney et al., 2011] has annota-
tions on multiple levels which may be difficult to recover from cell-level traces
alone. Semiring provenance is another interesting candidate. One challenge is,
again, that it is defined on rows. One opportunity is that trace analysis functions
are just that, functions, so a generic semiring trace analysis function could be
parameterized by concrete + and × operations and 0 and 1 values.

Expression provenance [Acar et al., 2012] annotates values with a tree of
abstract expressions that were executed to obtain the value. Conceptually this is
very close to the trace itself but the Trace type is not a query type. To implement
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TRACE = λa:Type. Typerec a (Trace Bool, Trace Int, Trace String,

λ _ b. List b, λ _ r. Record r, λ _ b. b)

Figure 6.15: The type-level function TRACE.

expression provenance in LinksT we would need to find a suitable (nested)
relational encoding. Giorgidze et al. [2013] show how to encode arbitrary
nonrecursive algebraic datatypes relationally and use this in an extension to
the language-integrated query library Dsh. The datatype for expressions is
recursive, but of a limited depth and thus can be unrolled. It seems possible
to do all of this in a trace analysis function, but perhaps it would be more
fruitful to extend LinksT itself to deal with algebraic datatypes to make this
easier. Unfortunately, even full support for recursive algebraic datatypes is not
quite enough to define the Trace type in the language, because that also needs
to store type information for polymorphic operations and comprehensions.

Combining forms of provenance is another interesting exercise. We have
already seen multiple trace analysis functions used together: both wherep and
lineage use value. However, it would be ill-typed to call wherep and then
lineage on a query trace, because wherep does not preserve the trace. Man-
ually fusing the where-provenance and lineage analysis functions is certainly
possible, but somewhat dissatisfying. It would be interesting to see if they can
be written in a way that preserves a copy of the trace, so that multiple trace
analysis functions could be stacked.

Fortunately, it is not necessary to extend LinksT to define new forms of
provenance or provenance combinators, which should make it much easier to
carry out such experiments in the future.

6.4 Self-tracing queries

This section describes the transformation that turns a normalized query Qn into
a query Qt that, when executed, returns a trace of the execution of Qn.

As mentioned before, the most important aspect of our notion of traces is
that all the tracing information is at the level of base types. An annotated value
of base type A has type Trace A. Records and lists on the other hand do not
carry any annotations themselves. In other words, the trace of a list is a list
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of traces and the trace of a record is a record of traces. A query typically has
a larger type than just a base type, at least a list constructor. The type-level
function TRACE, defined in Figure 6.15, describes the type of a traced query. If
a query Qn has type T(C), its traced version Qt has type T(TRACE C). TRACE
is defined in terms of Typerec to recursively traverse a tree made of List and
Record constructors and apply the Trace type constructor to all the base types
at the leaves of the tree. For example:

TRACE [〈a: [Int], b: 〈c: String〉 〉]
= [TRACE 〈a: [Int], b: 〈c: String〉 〉]
= [〈a: TRACE [Int], b: TRACE 〈c: String〉 〉]
= [〈a: [TRACE Int], b: 〈c: TRACE String〉 〉]
= [〈a: [Trace Int], b: 〈c: Trace String〉 〉]

Lemma 6.16. For all query types C, TRACEC is not a base type.

Proof. By induction on query typesC made up from base types, lists, and closed
records. ApplyingTRACE to base typesBool, Int, andString results in traced
base types Trace Bool, Trace Int, and Trace String, respectively. List
types are guarded by the List type constructor, and similarly for records. Traces
are not query types, but if they were, the induction hypothesis would apply.

Figure 6.17 shows the self-tracing transformation J·K and two helper functions.
The self-tracing transformation takes a term of type T(C) and returns a self-
tracing query of type T(TRACE C) for any query type C. The dist function is
a meta-level helper function that distributes a trace constructor over lists and
records. It takes a type, an expression with a hole H in it, and a value of the
given type and traverses lists and records until it reaches all the leaves and
wraps the expression with the hole around them.4 We need it to push down
trace information over list and record constructors and into the leaves.

We apply the tracing transformation to normalized queries. We do not rely
on the normal form itself, but only on the absence of non-primitive functions,
variants, and free variables. Thus, all variables that appear in a query are
introduced by for-comprehensions.

4We could write dist as an object-level function with the type below, but going from what is
basically a partially applied Trace constructor to a fully polymorphic function involves a lot of
boilerplate code for handling impossible non-base-type cases.
dist: forall a. (forall b. Trace b -> Trace b) -> TRACE a -> TRACE a
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JxK = x

JcK = Lit c

Jif L then M else N : T(C)K = if value (Trace Bool) JLK

then dist(TRACEC,If 〈cond= JLK,out=H〉,JMK)

else dist(TRACEC,If 〈cond= JLK,out=H〉,JNK)

J[]K = []

J[M]K = [JMK]

JM++NK = JMK++JNK

Jfor (x←M : D) N : T(C)K = for (x← JMK)

dist(TRACEC,For D 〈in= x,out=H〉,JNK)

J〈l = M〉K = 〈l = JMK〉

JM.lK = JMK.l

Jtable n 〈l : C〉K = for (y← table n 〈l : C〉)

[〈l = cell(n, l,y.oid,y.l)〉]

JM == (N : T(C))K = OpEqC 〈left= JMK,right= JNK〉

JM+NK = OpPlus 〈left= JMK,right= JNK〉

cell(t,c,r,d) = Cell 〈table= t,column= c,row= r,data= d〉

dist(TraceC,k, t) = k[H := t]

dist(ListC,k, l) = for (x← l) [dist(C,k,x)]

dist(〈l : C〉,k,r) = 〈l = dist(C,k,r.l)〉

Figure 6.17: Self-tracing transformation.

Variables are left untouched by the transformation, but in the self-tracing
query they have different types, namely trace types, as seen in the translation
of for-comprehensions. Literal values in the query are annotated with the Lit
constructor. To trace if-then-else we need to trace both branches and return
the correct one depending on whether the condition holds at runtime. We use
the trace analysis function value (defined in Section 6.3.1) to turn the trace
of the condition, which has type Trace Bool, back into a plain unannotated
Bool. This simplest of the trace analysis functions discards all trace annotations
and is described in more detail in Section 6.3.1. We cannot just not trace the
condition, because it may contain bound variables, but their type is different in



144 Chapter 6. LinksT — provenance through trace analysis

the self-tracing query. We use the dist function to distribute an annotation over
both branches that also contains the trace of the conditional. The cases for empty
lists, singleton lists, and list concatenation are the obvious ones considering that
a trace of a list is a list of traces. Self-tracing for-comprehensions iterate over
traced input and annotate every output element with the corresponding input,
again using dist. Note that as mentioned before the variables bound by com-
prehensions have different types in the original and self-tracing query. Record
construction and projection are again the obvious translations considering that
a trace of a record is a record of traces. Tables are translated to iterations over
the tables that provide initial annotations, similar to the where-provenance and
lineage transformations earlier. Here the initial annotation uses the cell function
which is just the Cell constructor in disguise. It takes the familiar annotations
table name, column name, row number via oid, and the data itself. Operators
like == and + record subtraces for their arguments. Equality, as a polymorphic
operation, additionally records the type at which it was applied. We need this
later when analyzing a trace.

As a sanity check we prove that the result of the tracing transformation is
type correct. We prove a lemma about dist first.

Lemma 6.18 (Distributing trace constructors is type correct). For all type construc-
torsC that are equivalent to a query result type (base types, list types, closed record types,
see Figure 6.36) and all expressions k with a holeH that have typeTrace D assuming the
holeH has type Trace D, and all expressions M of type TRACEC, dist(TRACE C,k,M)

has type TRACE C.

Proof. By induction on the query type constructor C.

• The base cases are Bool, Int, and String. For any base type O out of
these, we have TRACE O = Trace O. We have

dist(Trace O,k, t) = k[H := t]

and need to show that it has type Trace O. Both t and H have type
Trace O, so substituting one for the other in k does not change the type
(Lemma 6.25).

• Case C = List (TRACEC′): We need the right-hand side

for (x← l) [dist(TRACEC′,k,x)]
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to have type TRACE (ListC′). We use the rules for comprehension and
singleton list. We now need to show that dist(TRACE C′,k,x) has type
TRACEC′ which is true by induction hypothesis with the same k.

• Case C = 〈l : TRACEC′〉: The right-hand side

〈l = dist(TRACEC′,k,r.l)〉

needs to have type 〈l : TRACEC′〉. Thus, by record construction and record
projection, we need each of the expressions dist(TRACE C′,k,r.l) to have
type TRACEC′ which they do by induction hypothesis.

We only trace closed terms. However, we cannot require an empty context,
because then the induction would not work out for comprehensions. Therefore
we define a tracing transformation on contexts as follows.

Definition 6.19 (Trace context). JΓK maps term variable x to T(TRACE C) if
and only if Γ maps x to A, where C is the obvious constructor with · ` A = T(C).

Lemma 6.20. For every query type A made of base types, list constructors, and closed
records, there exists C such that Γ ` A = T(C) in a well-formed context Γ.

Theorem 6.21 (Trace rewriting is type correct). If Γ ` M : A then for all C, if
Γ ` A = T(C) then JΓK ` JMK : T(TRACE C), where Γ is a context that maps all term
variables to closed records with fields of base type and M is a plain Links query term in
normal form.

Proof. By induction on the typing derivation for M : T(C). Almost all cases
require that some subterms have a type T(C′) that is equal to some query type A.
We can obtain this constructor C′ by Lemma 6.20.

• Case
Γ(x) = A

Γ ` x : A
:

JΓK(x) = T(TRACE C) (Definition 6.19)
JΓK ` x : T(TRACE C)

• Literals c have base types Bool, Int, or String. Their traces Lit c have
types Trace Bool, Trace Int, or Trace String, respectively.

• Case
Γ ` L : Bool Γ `M : A Γ ` N : A

Γ ` if L then M else N : A
:
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The right hand side of the self-tracing transform is anotherif-then-else

with condition value (Trace Bool) JLK and then-branch

dist(TRACEC,If 〈cond= JLK,out=H〉,JMK)

and similar else-branch.
In the condition, we apply value : ∀α.T(α)→ T(VALUE α) to a subtrace
of type TRACE Bool by induction hypothesis. Therefore it has type
VALUE (TRACE Bool)which is equal to Bool by Lemma 6.11.
For all base typesD, If 〈cond= JLK,out=H〉 has typeTraceD assuming
H : Trace D. We have JMK : T(TRACE C) by IH. Therefore, by Lemma 6.18,
the whole term obtained by dist has type TRACE C. The else-branch is
analogous and the whole expression has type T(TRACE C).

• Case
Γ ` [] : List A

:

JΓK ` T(TRACE C) : Type using A = T(C)

JΓK ` [] : List T(TRACE C)

JΓK ` [] : T(List∗ (TRACE C))

JΓK ` [] : T(TRACE (List∗ C))

• Case
Γ `M : A

Γ ` [M] : List A
:

IH
JΓK ` JMK : T(TRACE C)

JΓK ` [JMK] : List T(TRACE C)

JΓK ` [JMK] : T(TRACE (List∗ C))

• Case
Γ `M : List A Γ ` N : List A

Γ `M++N : List A
:

IH
JΓK ` JMK : T(TRACE (List∗ C))

JΓK ` JMK : List T(TRACE C) analogous for N

JΓK ` JMK++JNK : List T(TRACE C)

JΓK ` JMK++JNK : T(TRACE (List∗ C))
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• Case
Γ `M : List B Γ,x : B ` N : List A

Γ ` for (x←M) N : List A
:

IH
JΓK ` JMK : T(TRACE (List∗ D))

JΓK ` JMK : List T(TRACE D)

?

JΓK,x : T(TRACE D) ` b : List T(TRACE C)

JΓK ` for (x← JMK) b : List T(TRACE C)

JΓK ` for (x← JMK) b : T(TRACE (List∗ C))

where b = dist(TRACEC,For D 〈in= x,out=H〉,JNK) and ? follows from
the induction hypothesis applied to JNK and Lemma 6.18.

• The case for records is similar to that for list concatenation, in that we have
multiple subtraces where the induction hypothesis applies, we just collect
them into a record instead of another list concatenation.

• Case record projection: The projection was well-typed before tracing,
so the record term M contains label l with some type A. By induction
hypothesis and A = T(TRACE C) the trace of M contains label l with type
TRACE C.

IH
JΓK ` JMK : 〈l• : T(TRACE C), . . .〉

JΓK ` JMK.l : T(TRACE C)

• Case table: This is a slightly more complicated version of the base case
for constants. We essentially map the Cell trace constructor over every
table cell. Thus we go from a list of records of base types to a list of records
of Traced base types.

JΓK ` table . . .

JΓK,y : 〈l : C〉 ` y.l : C

?

JΓK,y : 〈l : C〉 ` [〈l = cell(n, l,y.oid,y.l)〉] : [〈l : TraceC〉]

JΓK ` for (y← table n 〈l : C〉) [〈l = cell(n, l,y.oid,y.l)〉] : [〈l : TraceC〉]

JΓK ` for (y← table n 〈l : C〉) [〈l = cell(n, l,y.oid,y.l)〉] : T(TRACE [〈l : C〉])

There are a couple of steps missing at ?. The singleton list step is trivial.
Thenwe have one precondition for each column in the table. Recall that cell



148 Chapter 6. LinksT — provenance through trace analysis

is essentially an abbreviation for Cell, which records table name, column
name, row number, and the actual cell data in a trace. We use the table
name n and the record label l as string values for the table and column
fields. We enforce in the typing rules that every table has the oid column
of type Int.

• Case equality:

JΓK `C : Type

IH
JΓK ` JMK : T(TRACE C)

IH
JΓK ` JNK : T(TRACE C)

JΓK ` OpEqC 〈left= JMK,right= JNK〉 : Trace Bool

• Case plus, with liberal application of T(TRACE Int) = Trace Int:

Induction hypothesis
JΓK ` JMK : T(TRACE Int)

Induction hypothesis
JΓK ` JNK : T(TRACE Int)

JΓK ` OpPlus 〈left= JMK,right= JNK〉 : T(TRACE Int)

6.5 Normalization

Our ultimate goal is to translate LinksT queries — including provenance ex-
traction by trace analysis — to Sql. In Section 6.5.1 we define the reduction
relation on LinksT terms, constructors, and row constructors. In Section 6.5.2,
we show that this reduction relation preserves types. Section 6.5.3 describes the
LinksT normal form. In Section 6.5.4 we prove a progress lemma: well-typed
terms reduce or are in LinksT normal form. This is slightly different from stan-
dard progress in that the normal form is not a value. Rather, the normal form
describes partially evaluated programs that cannot reduce further, because they
are stuck on either database table references, or free variables. Progress and
preservation imply the existence of a partial normalization function. Section
6.5.5 tightens the normal form for queries. Closed terms with query type, if they
normalize at all, normalize to a term in the nested relational calculus. From
there we can use previous work, for example query shredding [Cheney et al.,
2014c] or flattening [Ulrich and Grust, 2015], to go the rest of the way to flat
Sql queries.
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6.5.1 Reduction relation

The reduction relation is overloaded for constructors, row constructors, and
terms. We have already seen the reduction rules for constructors and row
constructors in Figure 6.6. The reduction rules for terms are inspired by previous
work on Links query normalization [Cheney et al., 2014c; Cooper, 2009; Lindley
and Cheney, 2012].

Reduction rules fall into one of three categories: β-rules are listed in Fig-
ure 6.22 and perform computation when introduction and elimination forms
meet, like application of a function, or projection out of a record; commuting
conversions, listed in Figure 6.23, reorder terms to expose more β-reductions;
and congruence rules (Figure 6.24) allow subterms to reduce independently. For
example, (if x then 〈a = 5〉 else y).a reduces by a commuting con-
version toif x then 〈a = 5〉.a else y.a. A β-rule reduces 〈a = 5〉.a
to 5 and a congruence rule allows this reduction to happen inside the then

branch. Thus the whole term reduces to if x then 5 else y.a.
Unlike in standard evaluation rules, we perform reduction under binders,

like functions and comprehensions and, as seen above, in the branches of if-
then-else. This is crucial for removing all occurrences of language constructs
that we cannot translate to Sql because comprehension bodies and conditionals
can of course remain in the result of normalization.

The reduction rules do not impose any particular order of execution, like call-
by-name or call-by-value, but since all operations are pure, this is not observable.

6.5.2 Preservation

To prove preservation we will need the following substitution lemmas. Substi-
tution of variables in terms (1), type variables in types (2), and type variables
in terms (4) are standard for λML

i [Crary et al., 2002; Morrisett, 1995]. We add
variants for row constructors: substitution of row variables in types (3), a variant
of (2); and substitution of row variables in terms (5), a variant of (4). The row
variants use the syntactic sort S in place of C and ρ instead of α.

Lemma 6.25 (Substitution lemmas).

1. If Γ,x : A `M : B and Γ ` N : A then Γ `M[x := N] : B.

2. If Γ,α : K ` A : K′ and Γ `C : K then Γ[α :=C] ` A[α :=C] : K′[α :=C].
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(λx.M) N M[x := N]

fix f .M M[ f := fix f .M]

(Λα.M) C M[α :=C]

if true then M else N M

if false then M else N N

〈li = Mi〉.li Mi

rmap(li:Ci) M N 〈li = (M Ci) N.li〉

rfold(li:Ci) L M N L N.l1 (L N.l2 . . .(L N.ln M) . . .)

for (x← [M]) N N[x := M]

tracecase Lit M of (x.ML,MI ,MF ,MC,ME ,MP) ML[x := M]

tracecase If M of (ML,x.MI ,MF ,MC,ME ,MP) MI [x := M]

tracecase ForC M of (x.ML,x.MI ,α.x.MF ,x.MC,α.x.ME ,x.MP) MF [α :=C,x := M]

tracecase Cell M of (x.ML,x.MI ,α.x.MF ,x.MC,α.x.ME ,x.MP) MC[x := M]

tracecase OpEqC M of (x.ML,x.MI ,α.x.MF ,x.MC,α.x.ME ,x.MP) ME [α :=C,x := M]

tracecase OpPlus M of (x.ML,x.MI ,α.x.MF ,x.MC,α.x.ME ,x.MP) MP[x := M]

typecase Bool of (MB,MI ,MS,β.ML,ρ.MR,γ.MT ) MB

typecase Int of (MB,MI ,MS,β.ML,ρ.MR,γ.MT ) MI

typecase String of (MB,MI ,MS,β.ML,ρ.MR,γ.MT ) MS

typecase ListC of (MB,MI ,MS,β.ML,ρ.MR,γ.MT ) ML[β :=C]

typecase Record S of (MB,MI ,MS,β.ML,ρ.MR,γ.MT ) MR[ρ := S]

typecase TraceC of (MB,MI ,MS,β.ML,ρ.MR,γ.MT ) MT [γ :=C]

Figure 6.22: Normalization β-rules. See also commuting conversions in Fig-
ure 6.23, congruence rules in Figure 6.24, and constructor computation rules in
Figure 6.6.
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(if L then M1 else M2) N if L then M1 N else M2 N

(if L then M1 else M2) C if L then M1 C else M2 C

(if L then M else N).l if L then M.l else N.l

for (x← []) N []

for (x←M1 ++M2) N (for (x←M1) N)++(for (x←M2) N)

for (x← for (y← L) M) N for (y← L) for (x←M) N

if (if L then M1 else M2) then N1 else N2

 if L then (if M1 then N1 else N2) else (if M2 then N1 else N2)

for (x← if L then M1 else M2) N

 if L then for (x←M1) N else for (x←M2) N

tracecase if L then M1 else M2 of (ML,MI ,MF ,MC,ME ,MP)

 if L then tracecase M1 of (ML,MI ,MF ,MC,ME ,MP)

else tracecase M2 of (ML,MI ,MF ,MC,ME ,MP)

Figure 6.23: Commuting conversions reorder expressions to expose more β-
reductions.
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M M′

I[M] I[M′]

C C′

J[C] J[C′]

Term elimination frames I[] ::= λx.[] | [] N |M [] | Λα.[] | [] C

| if [] then M else N | if L then [] else N

| if L then M else [] | 〈l = [];N〉 | 〈l = M; []〉 | [].l
| rmapS [] N | rmapS M [] | rfoldS [] M N

| rfoldS L [] N | rfoldS L M [] | [[]] | []++N |M++N

| [] == N |M == N | []+N |M+N | for (x← []) N

| for (x←M) [] | Lit [] | If [] | ForC [] | Cell []

| OpEqC [] | OpPlus []

| tracecase [] of (ML,MI ,MF ,MC,ME ,MP)

| tracecase M of ([],MI ,MF ,MC,ME ,MP)

| tracecase M of (ML, [],MF ,MC,ME ,MP)

| tracecase M of (ML,MI , [],MC,ME ,MP)

| tracecase M of (ML,MI ,MF , [],ME ,MP)

| tracecase M of (ML,MI ,MF ,MC, [],MP)

| tracecase M of (ML,MI ,MF ,MC,ME , [])

| typecase C of ([],MI ,MS,β.ML,ρ.MR,γ.MT )

| typecase C of (MB, [],MS,β.ML,ρ.MR,γ.MT )

| typecase C of (MB,MI , [],β.ML,ρ.MR,γ.MT )

| typecase C of (MB,MI ,MS,β.[],ρ.MR,γ.MT )

| typecase C of (MB,MI ,MS,β.ML,ρ.[],γ.MT )

| typecase C of (MB,MI ,MS,β.ML,ρ.MR,γ.[])

Constructor elimination frames J[] ::= M [] | rmap[] M N | rfold[] L M N

| For [] M | OpEq [] M

| typecase [] of (MB,MI ,MS,β.ML,ρ.MR,γ.MT )

Figure 6.24: Congruence rules allow subterms to reduce independently.
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3. If Γ,ρ : K ` A : K′ and Γ ` S : K then Γ[ρ := S] ` A[ρ := S] : K′[ρ := S].

4. If Γ,α : K `M : A and Γ `C : K then Γ[α :=C] `M[α :=C] : A[α :=C].

5. If Γ,ρ : K `M : A and Γ ` S : K then Γ[ρ := S] `M[ρ := S] : A[ρ := S].

We also need standard context manipulation lemmas for weakening and
swapping the order of unrelated variables.

Lemma 6.26 (Weakening). If Γ `M : A, Γ ` B : K, and x does not appear free in Γ,
M, A, then Γ,x : B `M : A.

Lemma 6.27 (Context swap).

1. If Γ,x : Ax,y : Ay `M : B then Γ,y : Ay,x : Ax `M : B.

2. If Γ,x : Ax,y : Ay ` B : KB then Γ,y : Ay,x : Ax ` B : KB.

3. If Γ,α : Kα,y : Ay `M : B and α does not appear free in Ay then Γ,y : Ay,α : Kα `
M : B.

4. If Γ,α : Kα,y : Ay ` B : KB and α does not appear free in Ay then Γ,y : Ay,α : Kα `
B : KB.

5. If Γ,x : Ax,β : Kβ `M : B then Γ,β : Kβ,x : Ax,`M : B.

6. If Γ,x : Ax,β : Kβ ` B : KB then Γ,β : Kβ,x : Ax,` B : KB.

7. If Γ,α : Kαβ : Kβ `M : B and α does not appear free in Kβ then Γ,β : Kβ,α : Kα `
M : B.

8. If Γ,α : Kαβ : Kβ ` B : KB and α does not appear free in Kβ then Γ,β : Kβ,α : Kα `
B : KB.

With these helper lemmas out of the way, we can prove that the reduction
relation preserves kinds of constructors and types of terms.

Lemma 6.28 (Constructor preservation). For all LinksT type constructors C and
row constructors S, contexts Γ, and kinds K, if Γ `C : K and C C′, then Γ `C′ : K

and if Γ ` S : K and S S′, then Γ ` S′ : K.

Proof. By induction on the kinding derivation. We look at the possible reductions
(see Figure 6.6). Congruence rules allow for reduction in rows, function bodies,
applications, list, trace, record, row map, and typerec. These all follow directly
from the induction hypothesis. The remaining cases are:
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• (λα : K.C) D ; C[α := D]: by Lemma 6.25.

• Rmap C ·; ·: both sides have kind Row.

• Rmap C (lP : D;S) ; (lP : C D;Rmap C S): from the induction hypothesis
we have that C has kind Type→ Type, D has kind Type, and S has kind Row.
Therefore C D has kind Type and the whole right-hand side has kind Row.

• Typerec β-rules:

– Base type right hand sides have kind Type by IH.

– List left-hand side Typerec List∗ D (CB,CI,CS,CL,CR,CT ) and right-
hand side CL D (Typerec D (CB,CI,CS,CL,CR,CT )):
CL has kind Type→ K → K by IH. D has kind Type by IH, and the
typerec expression has kind K.

– Record left-hand side Typerec Record∗ S (CB,CI,CS,CL,CR,CT ) and
right-hand sideCR S (Rmap (λα.Typerec α (CB,CI,CS,CL,CR,CT )) S):
CL has kind Row→ Row→ K by IH. S has kind Row by IH. The row
map expression has kind Row, because the type-level function has
kind Type→ Type.

– The trace case is analogous to the list case.

Lemma 6.29 (Preservation). For all LinksT terms M and M′, contexts Γ, and types
A, if Γ `M : A and M M′, then Γ `M′ : A.

Proof. By induction on the typing derivation Γ ` M : A. Constants, variables,
empty lists, and empty records do not reduce. We omit discussion of the cases
that follow directly from the induction hypothesis, Lemma 6.28, and congruence
rules (see Figure 6.24), like M+N being able to reduce in both M and N. The
remaining, interesting reduction rules are the β-rules in Figure 6.22 and the
commuting conversions in Figure 6.23. We discuss them grouped by the relevant
typing rule.

• Function application:

– (λx.M) N M[x := N]: follows from Lemma 6.25.

– (if L then M1 else M2) N if L then M1 N else M2 N:
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We have:
Γ ` L : Bool Γ `M1 : A→ B Γ `M2 : A→ B

Γ ` if L then M1 else M2 : A→ B Γ ` N : A

Γ ` (if L then M1 else M2) N : B

and can therefore show:

Γ ` L : Bool

Γ `M1 : A→ B Γ ` N : A

Γ `M1 N : B

Γ `M2 : A→ B Γ ` N : A

Γ `M2 N : B

Γ ` if L then M1 N else M2 N : B

• Type instantiation:

– (Λα.M) C  M[α := C]: follows from the constructor substitution
lemma (Lemma 6.25).

– (if L then M1 else M2) C if L then M1 C else M2 C: hoisting
if-then-else out of the term works the same as application above.

• Fixpoint: follows from the substitution lemma (Lemma 6.25).

• If-then-else: if the condition is a Boolean constant, the expression reduces
to the appropriate branch, which has the correct type by IH. The commut-
ing conversion for lifting if-then-else out of the condition is type-correct
by IH and rearranging of if-then-else rules.

• List comprehensions:

– The if-then-else commuting conversion is as before.

– for (x← []) N []: [] has any list type and N has a list type.

– for (x← [M]) N N[x := M]: by substitution (Lemma 6.25).

– for (x ← M1 ++M2) N  (for (x ← M1) N) ++(for (x ← M2) N):
reorder rules.

– for (x← for (y← L) M) N for (y← L) for (x←M) N:
We have:

Γ ` L : [AL] Γ,y : AL `M : [AM]

Γ ` for (y← L) M : [AM] Γ,x : AM ` N : [AN ]

Γ ` for (x← for (y← L) M) N : [AN ]
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We need:

Γ ` L : [AL]

Γ,y : AL `M : [AM] Γ,y : AL,x : AM ` N : [AN ]

Γ,y : AL ` for (x←M) N : [AN ]

Γ ` for (y← L) for (x←M) N : [AN ]

We obtain Γ,y : AL,x : AM ` N : [AN ] from Γ,x : AM ` N : [AN ] by weak-
ening (Lemma 6.26) and context swap (Lemma 6.27).

• Projection: The β rule is obvious, the if-then-else commuting conversion
is as before.

• Type equality
Γ ` N : B Γ ` A = B

Γ ` N : A
: for all N′ with N N′ we have that

Γ ` N′ : B by the induction hypothesis. We also know that Γ ` A = B, so
Γ ` N′ : A by this typing rule and symmetry of type equality.

• Case rmap: Typing rule:

Γ `M : ∀α : Type.T(α)→ T(C α) Γ ` N : T(Record∗ S)

Γ ` rmapS M N : T(Record∗ (Rmap C S))

Reduction rule:

rmap〈li:Ci〉 M N 〈li = (M Ci) N.li〉

Need to show that 〈li = (M Ci) N.li〉 : T(Record∗ (Rmap C 〈li : Ci〉)). By row
type constructor evaluation, that type equals T(Record∗ 〈li : C Ci〉), which
is the obvious type of 〈li = (M Ci) N.li〉.

• Case rfold: Typing rule:

Γ ` L : T(C)→ T(C)→ T(C)

Γ `M : T(C) Γ ` N : T(Record∗ (Rmap (λα.α→C) S))

Γ ` rfoldS L M N : T(C)

Reduction rule:

rfold(li:Ci) L M N L N.l1 (L N.l2 . . .(L N.ln M) . . .)

Need to show that L N.l1 (L N.l2 . . .(L N.ln M) . . .) has type T(C). M has
type T(C). L has type T(C)→ T(C)→ T(C). Each N.li has type T(C),
because N has a record type obtained by mapping the constant function
with result C over row S.
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• Typecase typing rule:

Γ `C : Type
Γ,α : Type ` B : Type β,ρ,γ /∈Dom(Γ) Γ `MB : B[α := Bool∗]

Γ `MI : B[α := Int∗] Γ `MS : B[α := String∗]

Γ,β : Type `ML : B[α := List∗ β] Γ,ρ : Row `MR : B[α := Record∗ ρ]

Γ,γ : BaseType `MT : B[α := Trace∗ γ]

Γ ` typecaseα.B C of (MB,MI,MS,β.ML,ρ.MR,γ.MT ) : B[α :=C]

Reduction rules:

– typecase Bool∗ of (MB,MI,MS,β.ML,ρ.MR,γ.MT ) MB

Need to show that MB : B[α := Bool∗], which is one of our hypotheses.

– typecase List∗ C of (MB,MI,MS,β.ML,ρ.MR,γ.MT ) ML[β :=C]

Need to show that the result of reduction ML[β :=C] has type B[α :=

List∗ C], the same as the typing rule.

Γ `ML[β :=C] : B[α := List∗ C]

Instantiating the constructor substitution lemma (Lemma 6.25) gives
us

Γ[β :=C] `ML[β :=C] : (B[α := List β])[β :=C]

from Γ,α : Type ` B : Type and β /∈Dom(Γ)we know that neither B nor
Γ can contain β. Thus the only substitution for β we need to perform
is in the substitution for α and we can reassociate substitution like
this:

Γ `ML[β :=C] : B([α := List β][β :=C])

which is the same as

Γ `ML[β :=C] : B[α := ListC]

The other cases are analogous.
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• Case tracecase: Typing rule:

Γ `M : Trace A

Γ,xL : A `ML : B Γ,xI : 〈cond : Trace Bool, then : Trace A〉 `MI : B

Γ,αF : Type,xF : 〈in : T(TRACE αF),out : Trace A〉 `MF : B

Γ,xC : 〈table : String,column : String, row : Int,data : A〉 `MC : B

Γ,αE : Type,xE : 〈left : T(TRACE αE), right : T(TRACE αE)〉 `ME : B

Γ,xP : 〈left : Trace Int, right : Trace Int〉 `MP : B

Γ ` tracecase M of (xL.ML,xI .MI ,αF .xF .MF ,xC.MC,αE .xE .ME ,xP.MP) : B

Reductions:

– tracecase For C M of (x.ML,x.MI,α.x.MF ,x.MC,α.x.ME ,x.MP) 

MF [α :=C,x := M]

We need to show
?

Γ `MF [α :=C,x := M] : A

?: We only need M : 〈in : . . .〉 and C : Type, which we get by inversion
of the typing rule for For and the substitution lemmas.

The other cases are analogous.

6.5.3 LinksT normal form

Unlike in typical progress and preservation proofs, our goal is not to reduce a
program to a value like a number, string, or even a closure. Rather, we perform
rewriting to partially evaluate parts of the program that are independent of
values in the database. The goal is in particular to eliminate all occurrences
of language constructs we cannot translate to Sql. The LinksT normal form
is a crucial component of the argument for success. In combination with the
progress lemma in the next section, it tells us what terms look like after exhaus-
tive application of the normalization rules. Compared to LinksT source terms,
the LinksT normal form shows that certain combinations of expressions are
impossible after normalization, like an application of a literal function. Other
terms necessarily remain, like iteration over a table (but not a literal list). We
also see that some constructs are in normal form that are not in our target, the
nested relational calculus. We will later argue that these cannot actually appear
in queries, usually because queries are closed and have restricted types.
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Normal constructors C ::= E | Bool∗ | Int∗ | String∗ | λα : K.C

| List∗ C | Record∗ S | Trace∗ C

Neutral constructors E ::= α | E C | Typerec E (CB,CI ,CS,CL,CR,CT )

Normal row constr. S ::= · | lP : C;S |U
Neutral row constr. U ::= ρ | lP : C;U | Rmap C U

Normal terms M,N ::= F | c | λx : A.M | Λα : K.M

| if H then M else N |M+N

| 〈〉 | 〈l = M;N〉 | rmapU M N

| [] | [M] |M++N | for (x← T ) N | table n 〈R〉
| Lit M | If M | ForC M | Cell M | OpEqC M | OpPlus M

Neutral terms F ::= x | P.l | F M | F C | rfoldU L M N

| tracecase F of (x.ML,x.MI ,α.x.MF ,x.MC,α.x.ME ,x.MP)

| typecase E of (MB,MI ,MS,β.ML,ρ.MR,β.MT )

Neutral conditional H ::= F |M == N

Neutral projection P ::= F | rmapU M N

Neutral table T ::= F | table n 〈R〉

Figure 6.30: LinksT normal form.

The grammar of LinksT normal forms is given in Figure 6.30. Constructors
C in LinksT normal form differ from constructors in non-normal LinksT in the
application and Typerec forms. The idea is that the normal form only includes
type applications and Typerec formswhich are blocked from further reduction
by an unbound type variable. For example, (λα.Bool∗) Int∗ is not in LinksT
normal form (and we do not want it to be in normal form, because it can reduce
to Bool∗). On the other hand, α Int∗ is stuck and in normal form.

Remark 6.31. Constructors E and row constructors U always contain at least one free
type variable α or ρ and those are the only base cases for their respective sort.

We will later use the above to show that some term forms are impossible
within closed query terms in normal form. Such terms do not contain free type
variables, so E and U collapse into nothing, and terms built from E and U (like
rmap) cannot appear.

Neutral terms F are those stuck on a free variable x, a stuck constructor E, or
a stuck row constructor U . We also restrict what can appear as the condition in
an if-then-else, the iteratee of a list comprehension, and in the record position of
a projection. We will later argue that in a query term, all variables are references
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into tables and therefore everything that is not nested relational calculus will
disappear. The reason for having separate syntactic sorts H, P, and T is to make
this argument independent of types.

6.5.4 Progress

In this section we prove progress lemmas: a well-typed LinksT term is either
in normal form or it reduces to some other term, and similarly for constructors
and row constructors. The proofs are not surprising — all of the creative work
is in the reduction relations and normal forms.

Lemma 6.32 (Constructor and row constructor progress). For all well-kinded
LinksT type constructors C and row constructors S, we have that they are either in
LinksT normal form (Figure 6.30), or there is a type constructor C′ with C C′, or
row constructor S′ with S S′, respectively.

Proof. By induction on the kinding derivation of C or S (see Figure 6.4).

• Base types Bool, Int, String are in normal form.

• Type variables α are in normal form.

• Type-level functions λα.C: by IH, eitherC C′, inwhich case λα.C λα.C′,
or C is in normal form already, in which case λα.C is in normal form, too.

• Type-level application C D: by IH either C or D may reduce, in which
case the whole application reduces. Otherwise, C and D are in normal
form. The following cases of C do not apply, because they are ill-kinded:
base types, lists, records, and traces. If C is a normal form and a variable,
application, or typerec then C is a neutral form and D is a normal form so
C D is a neutral (and normal) form. Finally, if C is a type-level function,
the application β-reduces.

• List types: by IH either the argument reduces, or is in normal form already.

• Record types: by IH either the argument (a row) reduces, or is in normal
form already.

• Trace types: by IH either the argument reduces, or is in normal form
already.
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• Typerec C of(CB,CI,CS,α.CL,ρ.CR,α.CT ): by IH, either C C′, in which
case Typerec reduces with a congruence rule, orC is in one of the follow-
ing normal forms:

– IfC is a base, list, record, or trace constructor, the Typerec expression
β-reduces to the respective branch.

– C cannot be a type-level function, that would be ill-kinded.
– If C is one of the following neutral forms: variables, applications,
and Typerec, then by IH the branches CB, CI , etc. either reduce
and a congruence rule applies, or they are all in normal form and
Typerec C of(CB,CI,CS,α.CL,ρ.CR,α.CT ) is in normal form.

• The empty row · is in normal form.

• Row extensions lP : C;S: by IH applied to C and S we have three cases:

– If C C′, then lP : C;S lP : C′;S.
– If S S′, then lP : C;S lP : C;S′.
– If C and S are in normal form, then lP : C;S is in normal form.

• Rmap C S: we apply the induction hypothesis to S and C. If either C or S

takes a step, the whole row map expression takes a step via the respective
congruence rule. Otherwise S is in one of the following normal forms:

– Case empty row: Rmap C · ·

– Case lP : D;S′: Rmap C (lP : D;S′) (lP : C D;Rmap C S′).
– Case Rmap D U : Rmap C (Rmap D U) is in normal form.
– Case ρ: Rmap C ρ is in normal form.

• The row variable ρ is in normal form.

Lemma 6.33 (Progress). For all well-typed LinksT terms M, either M is in LinksT
normal form (Figure 6.30), or there is a LinksT term M′ with M M′.

Proof. By induction on the typing derivation of M.

• Constants: in normal form.

• Term variables: in normal form.
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• Term function: apply IH to body and either reduce or in normal form.

• Fixpoint: we can always take a step by unrolling once.

• Term application M N: apply induction hypothesis to M. If M reduces to
M′, then M N reduces to M′ N. Otherwise, M is in LinksT normal form. It
cannot be any of the following, because thesewould be ill-typed: constants,
type abstraction, operators, record introduction forms including record
map, list introduction forms, trace introduction forms. In the following
cases, we apply the induction hypothesis to N and either reduce to M N′ or
are in normal form already: variable, application, type application, record
fold, tracecase, typecase. This leaves the following cases:

– If M is a function, we β-reduce.

– If M is of the form if-then-else, we reduce using a commuting conver-
sion.

• Term-level type abstraction ∀α : M: by IH, either M M′, in which case
∀α : M ∀α : M′, or M is in normal form, in which case ∀α : M is in normal
form as well.

• Term-level type application M C: apply induction hypothesis to M. If
M reduces to M′, then M C reduces to M′ C. Otherwise, M is in LinksT
normal form. It cannot be any of the following, because these would
be ill-typed: constants, functions, operators, record introduction forms
including record map, list introduction forms, trace introduction forms.
In the following cases, the application is already in normal form: variable,
application, type application, projection, record fold, tracecase, typecase.
This leaves the following cases:

– If it is a term-level type abstraction, we β-reduce.

– If it is of the form if-then-else, we perform a commuting conversion.

• Case if L then M else N: apply induction hypothesis to all subterms. If
any of the subterms reduce, then the whole if-then-else reduces. Other-
wise, L,M,N are in LinksT normal form. The condition cannot be any of the
following, because these would be ill-typed: functions, type abstractions,
arithmetic operators, record introduction forms including record map, list
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introduction forms, trace introduction forms. In the following cases, the
condition already matches the normal form: variable, application, type
application, projection, record fold, tracecase, and typecase. This leaves
the following cases for the condition:

– Constants: true and false reduce, other constants are ill-typed.
– If the condition is of the form if-then-else itself, we apply a commuting
conversion.

– Operators with Boolean result like == are in normal form.

• Records 〈l = M;N〉: apply induction hypothesis to M and N. If either
reduces, the whole record reduces, otherwise it is in normal form.

• Projection M.l: apply induction hypothesis to M. If M reduces to M′, then
M.l reduces to M′.l. Otherwise, M is in LinksT normal form. It cannot be
any of the following, because thesewould be ill-typed: constants, functions,
type abstraction, operators, list introduction forms, trace introduction
forms. In any of the following cases of M, M.l is already in normal form:
variable, application, type application, projection, record map, record fold,
typecase, tracecase. This leaves the following cases for M:

– If it is of the form if-then-else itself, we apply a commuting conversion.
– It cannot be an empty record, or a record expression where label l

does not appear—these would be ill-typed. If M is a record literal
that maps l to M′ then 〈l = M′;N〉.l reduces to M′.

• Record map rmapS M N: by Lemma 6.32 we have that either S reduces to
S′, in which case rmapS M N reduces to rmapS′ M N, or is in normal form.
Similarly, M and N may reduce by IH. Otherwise, we have S, M, and N in
normal form. By cases of S:

– If it is a closed row, we apply the β-rule.
– If it is an open row U , rmapU M N is in normal form.

• Record fold rfoldS L M N: same as record map.

• Empty list: in normal form.

• Singleton list: apply IH to element and reduce or is in normal form.



164 Chapter 6. LinksT — provenance through trace analysis

• List concatenation: apply IH to both sides. If either reduces, the whole
concatenation reduces, otherwise it is in normal form.

• Comprehension for (x←M) N: apply induction hypothesis to M. If M

reduces to M′ then for (x←M) N reduces to for (x←M′) N. Otherwise,
M is in LinksT normal form. It cannot be any of the following, because
these would be ill-typed: constants, functions, type abstractions, primitive
operators, record introduction forms including record map, and trace
constructors. In the following cases we apply the IH to the body and either
reduce or the whole comprehension is in normal form: variables, term
application, type application, projection, tables, record fold, tracecase,
typecase. This leaves the following cases for M:

– If-then-else: reduces with a commuting conversion.
– Empty list: the whole comprehension reduces to the empty list.
– Singleton list: β-reduces.
– List concatenation: reduces with a commuting conversion.
– Comprehension: reduces with a commuting conversion.

• Table: in normal form.

• Trace constructors: apply IH and Lemma 6.32 to constituent parts. If either
reduces, the whole trace constructor reduces, otherwise it is in normal
form.

• Tracecase: apply induction hypothesis to the scrutinee. If it reduces, the
whole tracecase expression reduces. Otherwise it is in LinksT normal
form. It cannot be any of the following, because these would be ill-typed:
constants, functions, type abstractions, primitive operators, record intro-
duction forms, record map, empty or singleton lists, list concatenations
or comprehensions, tables. If the scrutinee is any of the following, by IH
we reduce in the branches or the whole tracecase is in normal form: vari-
ables, term application, type application, projection, record fold, tracecase,
typecase. This leaves the following cases:

– If-then-else: reduces using commuting conversion.
– Trace constructor: β-reduces.
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• Typecase: apply Lemma 6.32 to the scrutinee. Either it reduces, in which
case the whole typecase expression reduces. Otherwise it is in normal
form. It cannot be a type-level function, that would be ill-kinded. In the
following cases, we apply the induction hypothesis to the branches of
the typecase and reduce there, or we are in LinksT normal form: type
variables, type-level application, and typerec. And finally, if the outmost
constructor is one of the following, a β-rule applies: bool, int, string, list,
record, trace.

• Primitive operators like == and +: by IH either the arguments reduce, in
which case the whole expression reduces, or are in normal form, in which
case the whole expression is in normal form.

6.5.5 Queries normalize to nested relational calculus

In this section, we further restrict the LinksT normal form for queries, that is,
closed expressions of nested relational type. The general idea is, that because
queries are closed and have nested relational type, they cannot possibly contain
functions, polymorphism, record map, etc. The proof relies heavily on the exact
definition of the normal form. In particular, the sortsU and E (Figure 6.30) have
type and row variables as the only base cases. Queries in normal form do not
contain any type or row variables and therefore do not contain any terms that
are built usingU or E, like rmap or typecase. We cannot rid ourselves of term
variables — and thus terms they appear in — in quite the same manner, because
for-comprehensions bind term variables and can appear in normal forms (and
indeed must appear, otherwise we would have no need for generating database
queries in the first place). However, since queries are closed, the only variables
that appear are bound by comprehensions over tables and thus have closed
record types with labels of base types. We capture this property in the definition
of query contexts (Definition 6.34). We can use this to show a lemma which
states that all neutral terms F are actually variables or projections of variables.
We use this lemma to argue that queries are free of, for example, applications
F M, because F collapses to x or x.l and we know that all variables have table
row types (closed records with labels of base type) and thus the application
would be ill-typed. This argumentation extends to the other constructs that are
in LinksT normal form but not in nested relational calculus, and therefore we
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Types A ::= Bool | Int | String | [A] | 〈l : A〉
Terms M,N,L ::= c | x | 〈l = M〉 |M.l |M+N |M == N | if L then M else N

| [] | [M] |M++N | for (x← N) M | table n 〈l : A〉

Figure 6.36: Target normal form for queries: Nrc.

conclude that closed queries in normal form are in nested relational calculus.

Definition 6.34 (Query context). A query context does not contain type or row
variables and all term variables have closed record type with labels of base type.

• The empty context · is a query context.

• The context Γ,x : 〈li : Ai〉 is a query context, if Γ is a query context, x is not
bound in Γ already, and each type Ai is a base type.

Lemma 6.35. A term in LinksT normal form (Figure 6.30) that matches the grammar
for F and is well-typed in a query context Γ, is of the form x or x.l.

Proof. By induction on the typing derivation. The term cannot be a record fold
or typecase, because those necessarily contain a (row) type variable, which is
unbound in the query contextΓ. It cannot be a term application, type application,
or tracecase, because the term in function position or the scrutinee, by IH, is
of the form x or x.l, both of which are ill-typed given that the query context Γ

does not contain function types, polymorphic types, or trace types. Projections
P.l are of the form F.l or (rmapU M N).l. The former case reduces by IH to x.l

or x.l′.l, the first of which is okay, and the second is ill-typed. The latter case is
impossible, because U necessarily contains a row variable and would therefore
be ill-typed. This leaves variables x and projections of variables x.l.

Theorem 6.37. If M is a term in LinksT normal form with a nested relational type in
a query context Γ, then M is in the nested relational calculus (Figure 6.36).

Proof. By induction on the typing derivation.

• Constants, variables, empty lists, and tables are in both languages.

• Functions, type abstractions, and trace constructors do not have nested
relational type.
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• Function application: The typing rule

Γ `M′ : A→ B Γ ` N : A

Γ `M′N : B

requires M′ to have a function type. Since M is in normal form, M′ matches
the grammar F . Lemma 6.35 implies that M′ is either a variable x or a
projection x.l. The query context Γ assigns record types with labels of base
types to all variables — not function types — a contradiction.

• Type instantiation: The typing rule

Γ `M′ : ∀α : K.A Γ `C : K

Γ `M′ C : A[α :=C]

requires M′ to have a polymorphic type. The normal form assumption
requires M′ to match the normal form F . Therefore, Lemma 6.35 applies,
so M′ is either a variable x or a projection x.l. The query context Γ assigns
record types with labels of base types to all variables — a contradiction.

• Primitive operators, if-then-else, records, singleton list, and list concatena-
tion: apply the induction hypothesis to the subterms.

• Projection M′.l: M′ is in normal form P, which is either of the form F or a
record map. Lemma 6.35 restricts F to x and x.l′, both of which are nested
relational calculus terms. P cannot be of the form rmapU N′ N′′, because
U necessarily contains a free type variable (see Remark 6.31), and thus
cannot be well-typed in a query context Γ which does not contain type
variables.

• Record map and fold have normal forms rmapU M′ N and rfoldU L M′ N,
respectively. U necessarily contains a free type variable (see Remark 6.31),
and thus cannot be well-typed in a query context Γ which does not contain
type variables.

• List comprehension for (x←M′) N: The iteratee M′ is in normal form T ,
which includes tables and normal forms F . If M′ is a table, x has closed
record type with labels of base types, the induction hypothesis applies
to N, and the whole expression is in nested relational calculus. If M′ is of
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the form F , Lemma 6.35 applies and implies that M′ is either x or x.l. Both
cases are ill-typed, because the query context Γ only contains variables
with closed records with labels of base type — a contradiction.

• Tracecase: much like the application case above, the typing derivation
forces the scrutinee to be of trace type. The normal form forces the scrutinee
to be of the form F , and fromLemma 6.35 follows that it has to be a variable,
or projection of a variable. The query context Γ assigns record types with
labels of base types to all variables — a contradiction.

• Typecase: the scrutinee is in normal form E which contains at least one
free type variable (see Remark 6.31). In a query context which only binds
term variables, this cannot possibly be well-typed — a contradiction.

6.6 Implementation

We implemented a prototype of the LinksT self-tracing transformation and
normalization procedure inHaskell. We also implemented the value, wherep,
and lineage trace analysis functions, as described in Section 6.3. This is just
enough to report some initial results on provenance through trace analysis on a
couple of examples.

Recall the boat tours query from Figure 2.4 on page 27. The query below
is a minor variant (with reordered comprehensions and moved conditions) in
LinksT.

for (x <- table "agencies" 〈..〉)
for (y <- table "externalTours" 〈..〉)

if (x.name == y.name && y.type == "boat")
then [〈name = y.name, phone = x.phone〉] else []

We can report that tracing the above query, applying the value trace analysis
function, and normalizing again results in the exact same query.

More interestingly, we can trace the query and apply the wherep trace
analysis function to extract where-provenance. The normalized query is shown
below. The only difference to the query generated by LinksW is that we use
a record of data, table, column, and row in LinksT, but a pair of data and
provenance triple in LinksW.

for (x <- table "agencies" 〈..〉)
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for (y <- table "externalTours" 〈..〉)
if (x.name == y.name && y.type == "boat")
then [〈name = 〈table = "externalTours", column = "name",

row = y.oid, data = y.name〉,
phone = 〈table = "agencies", column = "phone",

row = x.oid, data = x.phone〉 〉]
else []

Doing the same with lineage once again shows the problem with tracing
at the leaves and combining annotations using concatenation: Every row of the
boat tours example has 15 lineage annotations, instead of 2, as seen below.

for (x <- table "agencies" 〈..〉)
for (y <- table "externalTours" 〈..〉)

if (x.name == y.name && y.type == "boat")
then [〈data = 〈name = y.name, phone = x.phone〉,

lineage = [〈table = "agencies", row = x.oid〉] ++

[〈table = "agencies", row = x.oid〉] ++

[〈table = "agencies", row = x.oid〉] ++

[〈table = "externalTours", row = y.oid〉] ++

[〈table = "externalTours", row = y.oid〉] ++

[〈table = "externalTours", row = y.oid〉] ++

[〈table = "externalTours", row = y.oid〉] ++

[〈table = "externalTours", row = y.oid〉] ++

[〈table = "agencies", row = x.oid〉] ++

[〈table = "agencies", row = x.oid〉] ++

[〈table = "agencies", row = x.oid〉] ++

[〈table = "externalTours", row = y.oid〉] ++

[〈table = "externalTours", row = y.oid〉] ++

[〈table = "externalTours", row = y.oid〉] ++

[〈table = "externalTours", row = y.oid〉] ++

[〈table = "agencies", row = x.oid〉]〉]
else []

We did not implement set semantics, or a special operator to remove static
duplication. Something along those lines is clearly needed for provenance based
on trace analysis.

Below is a variant of the example query from Chapter 4, after being traced,
analyzed with the value trace analysis function, and normalized. Again, nor-
malization removes all traces of tracing and results in a reasonable query.

for (x <- table "presidents" 〈nth: Int, name: String〉)
[〈dates = for (y <- table "inaugurations" 〈..〉)
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for (z <- table "metro" 〈..〉)
if (y.nth == x.nth && z.date == y.date &&

z.time == 11 && z.trips >= 193000)

then [y.date] else [],

name = x.name〉]

Where-provenance of nested results works, as seen below.
for (x <- table "presidents" 〈nth: Int, name: String〉)

[〈dates = for (y <- table "inaugurations" 〈..〉)
for (z <- table "metro" 〈..〉)

if (y.nth == x.nth && z.date == y.date &&

z.time == 11 && z.trips >= 193000)

then [〈table = "inaugurations", column = "date",
row = y.oid, data = y.date〉]

else [],

name = 〈table = "presidents", column = "name",
row = x.oid, data = x.name〉 〉]

Figure 6.38 shows the normalized query after tracing and applying the
lineage trace analysis function. This time, we removed the obviously dupli-
cated lineage annotations. Still, the last line adds the presidents table to the
lineage of the outer collection. This is one instance where static deduplication
in set union is not entirely trivial. We would have to push the singleton list
with the presidents annotation into the nested comprehensions and into the
else-branch (the then-branch stays as it is) to entirely remove duplicates.

We also tried some of the benchmark queries from Chapter 5. Other than
the duplication of annotations in the lineage queries, the generated code looks
reasonable. Normalization performance is good enough to be unnoticeable,
even with a naive implementation of the reduction rules that only performs a
single step at a time and re-traverses the expression until it finds the next redex
in every step.
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for (x <- table "presidents" 〈nth: Int, name: String〉)
[〈data = 〈dates = for (y <- table "inaugurations" 〈..〉)

for (z <- table "metro" 〈..〉)
if (y.nth == x.nth && z.date == y.date &&

z.time == 11 && z.trips >= 193000)

then [〈data = y.date,

lineage = [〈table = "presidents",
row = x.oid〉,
〈table = "inaugurations",
row = y.oid〉,
〈table = "metro",
row = z.oid〉]〉]

else [],

name = x.name〉,
lineage = (for (y <- table "inaugurations" 〈..〉)

for (z <- table "metro" 〈..〉)
if (y.nth == x.nth && z.date == y.date &&

z.time == 11 && z.trips >= 193000)

then [〈table = "presidents", row = x.oid〉,
〈table = "inaugurations", row = y.oid〉,
〈table = "metro", row = z.oid〉]

else []) ++

[〈table = "presidents", row = x.oid〉]〉]

Figure 6.38: Trace analysis with lineage of the example query from Chapter 4
with obvious lineage annotation duplication manually removed.
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6.7 Related and future work

We did not prove strong normalization and in the presence of fix we, of course,
do not expect strong normalization to hold. However, it would be nice to
have some guarantee about the termination behavior of normalization like: if
call-by-name evaluation would terminate then normalization terminates. An im-
plementation could use this to guarantee termination of trace analysis functions
by, for example, enforcing structural recursion.

Extracting provenance from traces is not a new idea [Acar et al., 2012; Ch-
eney et al., 2014a; Müller et al., 2018]. What makes our work different is that
trace analyses are defined in the language itself. In combination with query
normalization, this makes LinksT the first, to our knowledge, system that can
execute user-defined query trace analysis inside the database system.

Compared to some of the other work on tracing, our traces contain less
information. Some information would be easy to add, like concatenation op-
erations or projections. Other information requires changing the structure of
traces in a more invasive way. In particular, our traces are cell-level only and
do not include information about the binding structure of queries. We also
trace only after a first normalization phase, so traces do not include information
about, for example, functions in the original query code. Tree-shaped traces
with explicit representation of variables like those proposed by Cheney et al.
[2014a] in particular, seem to make writing well-typed provenance extraction
functions more difficult. It can be done with dependent types — we prototyped
such traces and trace analysis functions in Idris— but this is not necessarily
the direction we expect Links to go. Müller et al. [2018] only record dynamic
control flow decisions in traces and interpret the static query together with the
dynamic trace to recover provenance. It would be interesting to see whether we
could do something similar in a more language-integrated way.

We propose to use query shredding [Cheney et al., 2014c] to turn nested
relational calculus into a bounded number of Sql queries because it is imple-
mented in Links already. Alternatively, we could use other query compilation
strategies like that employed by Dsh [Ulrich and Grust, 2015] which is based
on the flattening transformation [Blelloch and Sabot, 1990] or even target other
execution backends by translating nested relational calculus further using, for
example, the query compiler Q*cert [Auerbach et al., 2017].



6.7. Related and future work 173

LinksT follows Links tradition and uses a normalization procedure that
eliminates language constructs with no obvious counterpart in Sql, rather than
attempt to encode these constructs. However, the latter might be an option too.
Crary et al. [2002] introduce λr, a variant of λML

i where runtime type information
is explicitly represented as a datatype when necessary. Giorgidze et al. [2013]
show how to translate algebraic datatypes to Sql and Grust and Ulrich [2013]
translate functions to Sql. It seems plausible that one could put these together
to translate all of LinksT to Sql without necessarily normalizing to eliminate
functions, traces, and typecase. Indeed, the restriction to query types would
become unnecessary. One might still want to do some normalization, or partial
evaluation, to avoid computing large traces where possible.

LinksT builds on λML
i [Morrisett, 1995]. λr improves on λML

i in making run-
time type information explicit, avoiding passing types where unnecessary, and
improving the ergonomics of the typecase typing rule by refining types in con-
text Crary et al. [2002]. An implementation would benefit from the latter. The
former points do not matter much in the context of Links, because it is inter-
preted anyway, which makes it easy to access to type information at runtime,
and we expect normalization time to typically be irrelevant compared to the
time it takes to open a database connection, let alone execute a query.

LinksT features generic record programming in the form of record mapping
and folding. These were the simplest extensions to how Links currently imple-
ments records and row types [Lindley and Cheney, 2012] we could come up
with, that would meet the requirements of trace analysis. Other languages with
generic record programming constructs include Ur/Web and PureScript.

Ur/Web [Chlipala, 2015] features “first class, type-level names and records”
[Chlipala, 2010]. Its generic and metaprogramming features seem suitable for
our needs. At the moment it lacks a powerful query compilation strategy, how-
ever. Type inference for LinksT is an open problem. Type inference forUr/Web is
undecidable. However, Chlipala [2010] claims that heuristics work well-enough
in practice to mostly avoid proof terms and complex type annotations. Maybe
this could be a model for LinksT, too.

PureScript is a Haskell-like language with first class records based on row
types. It supports generic record programming by converting back and forth
between rows and type-level lists, and general type-level computation with
multi-parameter type classes, functional dependencies, and parts of instance
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chains [Morris and Jones, 2010]. This is enough to encode type-level functions
like WHERE, but not a particularly direct or pleasant way to program. Links
does not at the moment have anything like type classes. It is not clear that
implementing all of this machinery just to avoid record map and fold is cost-
effective. However, type classes are widely useful in general and we could also
use them to restrict queries to query types instead of having this built into the
typechecker, so it might be worthwhile.

Haskell’s support for records is syntactic sugar for algebraic datatypes with
accessor functions and does not currently extend to record map and fold. Even
so, it is almost certainly possible to encode those, as well as typecase and the
necessary type-level computations in Haskell. It would be very interesting to
see an implementation of LinksT on top of Dsh [Giorgidze et al., 2011; Stolarek
and Cheney, 2018; Ulrich and Grust, 2015].

As mentioned before, we have designed LinksT to be as easy an extension of
Links as possible, but it is not implemented yet. This should probably be the next
step towards flexible, efficient, and effective language-integrated provenance.



Chapter 7

Conclusions

This dissertation introduces language-integrated provenance — the idea that a
programming language can be a provenance system in its own right, capable of
answering data provenance questions about queries, without any special support
for provenance from the underlying database system. Language-integrated
query is the key enabling technology for encoding provenance annotations and
to turn even user-defined provenance propagation behavior into efficient Sql
queries to be executed by mainstream database systems.

There are some shortcomings, open questions, and opportunities for interest-
ing future work. Programs, in particular web servers, may runmuch longer than
the duration of a database query or even a transaction. It would be interesting
to extend the correctness properties for where-provenance and lineage to say
something about the meaning of provenance annotations in the presence of
database updates.

Links lacks some features that are commonly found in other query languages,
such as grouping and aggregations. It would be interesting to add support for
them to Links and its provenance variants, or to further explore language-
integrated provenance in a language that already supports them. LinksT in
particular would benefit from support for mixed set, multiset, and list semantics
in a single query. Features not commonly found in query languages are algebraic
datatypes and first-class functions, which can nevertheless be translated to Sql
[Giorgidze et al., 2013; Grust andUlrich, 2013]. These are particularly interesting
for language-integrated provenance because they might make the implementa-
tion of LinksT easier and they could narrow the gap between provenance of just
database queries and provenance of more general-purpose language constructs.
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There are challenges and opportunities in implementing LinksT, specifically.
Writing a trace analysis function that returns bothwhere-provenance and lineage
should be straightforward. However, it would be more satisfying to find a
general way to structure analysis functions such that any number of different
forms of provenance can be combined. While we have proven basic provenance
correctness properties for LinksW and LinksL, we have no such proofs for the
respective trace analysis functions, so LinksT falls short of a strict interpretation
of Requirement 1. Other well-known forms of provenance may or may not be
expressible as trace analysis functions at all, given the power of the language and
normalization algorithm and the structure and information content of traces.
Their implementation might require changes to the structure and content of
traces, the language of trace analysis functions, and its normalization algorithm.

Despite the limitations and remaining open questions, this dissertation shows
how to solve the problems set out in the introduction. Looking back at the
requirements for provenance systems set out by Glavic, Miller, and Alonso
[2013], we claim that language-integrated provenance has

1. “Support for different types of provenance with sound semantics.”
LinksW and LinksL demonstrate language support for one form of prove-
nance each. We prove basic provenance correctness properties for both
of them. LinksW in particular is upfront about what can and cannot have
where-provenance and rejects queries that ask for the impossible.
LinksT goes further than most previous provenance systems and allows
users to define their own forms of provenance by writing functions to
extract information from the trace of a query execution.

2. “Support for provenance generation for complex [queries].”
The compositional nature of the query translations combined with query
normalization means that provenance generation works on all queries, if it
is defined in the first place. Links supports first-class functions and nested
results, which makes it richer than many other query languages. However,
there is still work to do to extend this to grouping and aggregations.

3. “Support for complex queries over provenance information.”
Provenance information uses the same nested relational data model as
other query data. Thanks, again, to compositional query transformations
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and query normalization, the whole language can be used in queries over
provenance information.

4. “Support for large databases.”
Provenance is computed on demand and not stored in the database. Query
normalization produces reasonably efficient queries using standard Sql
features that are easy for query planners to optimize.
In Chapter 5, we evaluate the performance overhead for querying where-
provenance and lineage in LinksW and LinksL and conclude that it is
comparable to existing research prototypes of specialized provenance
systems. This has been partially confirmed by Lee, Ludäscher, and Glavic
[2018], who have compared the performance of LinksL to their provenance
system Pug and found them competitive.

Beyond the basic requirements for provenance systems, the provenance
variants of Links provide different models for interacting safely with prove-
nance data in a client program. LinksT exceeds our initial goals and offers
programmable provenance support that allows users to define their own forms
of provenance, rather than just a choice between a number of built-in options.

Language-integrated provenance also offers independence from special sup-
port for provenance from the underlying database system. While we have
personally only used Links together with PostgreSQL so far, the generated
queries use standard Sql features and should be portable to most mainstream
database systems.

Rewriting all programs in a research programming language to be able to
query provenancemay seemeven less appealing than switching to a research pro-
totype of a database system. Fortunately, the general idea of language-integrated
provenance is applicable to other languages with sufficiently powerful language-
integrated queries. Stolarek and Cheney [2018] have already implemented the
translations employed by LinksW and LinksL in Haskell, using the Dsh library
[Ulrich and Grust, 2015]. A similar embedding could work for OCaml, for
which there is a normalization-based query library called QueΛ [Suzuki et al.,
2016]. Idris [Brady, 2013] and other dependently-typed languages might be
powerful enough to implement even LinksT as a library. Languages that provide
type safety for language-integrated queries but no normalization, such as C#,
F#, andUr/Web [Chlipala, 2015], would require much more careful provenance
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translations to still produce reasonable queries. Languages without support for
nested collections in queries would require a different representation of lineage.
It should be possible to find syntax-directed variations of the type-directed
provenance translations for use in untyped languages. Those would of course
not provide the same type safety guarantees, but then their users supposedly
have found ways to cope with that.

For the future, we hope that language-integration will make provenance
more widely available. This should help programmers write robust, provenance-
aware programs; make computation more transparent; answer questions about
the reliability and sources of data; and generally be a small step towards making
the dreams of Cheney, Chong, Foster, Seltzer, andVansummeren [2009b], myself,
and other provenance researchers come true.
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