
Language-integrated Provenance

Stefan Fehrenbach and James Cheney
University of Edinburgh

stefan.fehrenbach@ed.ac.uk,jcheney@inf.ed.ac.uk

ABSTRACT
Provenance, or information about the origin or derivation
of data, is important for assessing the trustworthiness of
data and identifying and correcting mistakes. Most prior
implementations of data provenance have involved heavy-
weight modifications to database systems and little attention
has been paid to how the provenance data can be used
outside such a system. We present extensions to the Links
programming language that build on its support for language-
integrated query to support provenance queries by rewriting
and normalizing monadic comprehensions and extending the
type system to distinguish provenance metadata from normal
data. The main contribution of this paper is to show that the
two most common forms of provenance can be implemented
efficiently and used safely as a programming language feature
with no changes to the database system.

1. INTRODUCTION
A Web application typically spans at least three different

computational models: the server-side program, browser-side
HTML or JavaScript, and SQL to execute on the database.
Coordinating these layers is a considerable challenge. Re-
cently, programming languages such as Links (Cooper et al.
2007), Hop (Serrano 2009) and Ur/Web (Chlipala 2015) have
pioneered a cross-tier approach to Web programming. The
programmer writes a single program, which can be type-
checked and analyzed in its own right, but parts of it are
executed to run efficiently on the multi-tier Web architecture
by translation to HTML, JavaScript and SQL. Cross-tier
Web programming builds on language-integrated query (Mei-
jer et al. 2006), a technique for safely embedding database
queries into programming languages.

When something goes wrong in a database-backed Web
application, understanding what has gone wrong and how
to fix it is also a challenge. Often, the database is the
primary “state” of the program, and problems arise when
this state becomes inconsistent or contains erroneous data.
For example, Figure 1 shows Links code for querying data

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PPDP ’16, September 05 - 07, 2016, Edinburgh, United Kingdom
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4148-6/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2967973.2968604

var agencies = table ”Agencies”
with (name:String, based in:String, phone:String)
from db;
var externalTours = table ”ExternalTours”
with (name:String, destination:String, type:String, price:Int)
from db;
var q1 = query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name && e.type == ”boat”)
[(name = e.name,
phone = a.phone)]

}

Figure 1: Links table declarations and example query

name phone

EdinTours 412 1200
EdinTours 412 1200
Burns’s 607 3000

Figure 2: Example query results

from a (fictional) Scottish tourism database, with the result
shown in Figure 2. Suppose one of the phone numbers
is incorrect: we might want to know where in the source
database to find the source of this incorrect data, so that
we can correct it. Alternatively, suppose we are curious
why some data is produced: for example, the result shows
EdinTours twice. If we were not expecting these results, e.g.
because we believe that EdinTours is a bus tour agency and
does not offer boat tours, then we need to see additional
input data to understand why they were produced.

Automatic techniques for producing such explanations,
often called provenance, have been explored extensively in
the database literature (Cui et al. 2000; Buneman et al. 2001;
Green et al. 2007; Glavic and Alonso 2009b). Neither con-
ventional nor cross-tier Web programming currently provides
direct support for provenance. A number of implementation
strategies for efficiently computing provenance for query re-
sults have been explored, but no prior work considers the
interaction of provenance with clients of the database.

We propose language-integrated provenance, a new ap-
proach to implementing provenance that leverages the bene-
fits of language-integrated query. In this paper, we present
two instances of this approach, one which computes where-
provenance showing where in the underlying database a
result was copied from, and another which computes lineage

http://dx.doi.org/10.1145/2967973.2968604

showing all of the parts of the underlying database that were
needed to compute part of the result. Both techniques are im-
plemented by a straightforward source-to-source translation
which adjusts the types of query expressions to incorporate
provenance information and changes the query behavior to
generate and propagate this information. Our approach is
implemented in Links, and benefits from its strong support
for rewriting queries to efficient SQL equivalents, but the
underlying ideas may be applicable to other languages that
support language-integrated query, such as F# (Syme 2006),
SML# (Ohori and Ueno 2011), or Ur/Web (Chlipala 2015).

Most prior implementations of provenance involve changes
to relational database systems and extensions to the SQL
query language, departing from the SQL standard that rela-
tional databases implement. To date, none of these proposals
have been incorporated into the SQL standard or supported
by mainstream database systems. If such extensions are
adopted in the future, however, we can simply generate
queries that use these extensions in Links. In some of these
systems, enabling provenance in a query changes the re-
sult type of the query (adding an unpredictable number
of columns). Our approach is the first (to the best of our
knowledge) to provide type-system support that makes sure
that the extra information provided by language-integrated
provenance queries is used safely by client.

Our approach builds on Links’s support for queries that
construct nested collections (Cheney et al. 2014c). This
capability is crucial for lineage, because the lineage of an
output record is a set of relevant input records. Moreover,
our provenance translations can be used with queries that
construct nested results. Our approach is also distinctive
in allowing fine-grained control over where-provenance. In
particular, the programmer can decide whether to enable or
disable where-provenance tracking for individual input table
fields, and whether to keep or discard provenance for each
result field.

We present two simple extensions to Links to support where-
provenance and lineage, and give (provably type-preserving)
translations from both extensions to plain Links. We have
implemented both approaches and experimentally validated
them using a synthetic benchmark. Provenance typically
slows down query evaluation because more data is manip-
ulated. For where-provenance, our experiments indicate a
constant factor overhead of 1.5–2.8. For lineage, the slow-
down is between 1.25 and 7.55, in part because evaluating
lineage queries usually requires manipulating more data. Al-
though we have not yet compared our approach directly to
other systems, these results appear to be in a reasonable
range: for example, the Perm system (Glavic and Alonso
2009b) reports slowdowns of 3–30 for a comparable form of
lineage.

This paper significantly extends an earlier workshop pa-
per (Fehrenbach and Cheney 2015). The workshop version
only outlined our initial design for where-provenance in Links;
this paper presents the fully-implemented system, extends it
to support lineage, and gives a detailed experimental evalua-
tion of both extensions.

2. OVERVIEW
In this section we give an overview of our approach, first

covering necessary background on Links and language-integrated
query based on comprehensions, and then showing how prove-
nance can be supported by query rewriting in this framework.

Base types O ::= Int | Bool | String
Rows R ::= · | R, l : A

Table types T ::= table(R)

Types A,B ::= O | T | A -> B | (R) | [A]

Contexts Γ ::= · | Γ, x : A

Expressions L,M,N ::= c | x | (li = Mi) | N.l

| fun f(xi) N | N(Mi)

| var x = M ;N | if (L) {M} else {N}
| query {N} | table n with (li : Oi)

| [] | [N] | N ++ M | empty(M)

| for (x <- L) M | where(M) N

| for (x <-- L) M | insert L values M

| update (x <- L) where M set N

| delete (x <- L) where M

Figure 3: Syntax of a subset of Links.

We will use a running example of a simple tours database,
with some example data shown in Figure 5.

2.1 Links background
We first review a subset of the Links programming language

that includes all of the features relevant to our work; we omit
some features (such as effect typing, polymorphism, and
concurrency) that are not required for the rest of the paper.
We also omit detailed discussion of the operational semantics
of Links, which is presented in previous work (Lindley and
Cheney 2012).

Figure 3 presents a simplified subset of Links syntax, suffi-
cient for explaining the provenance translations in this pa-
per. Types include base types O (such as integers, booleans
and strings), table types table(li: Ai), function types A -> B,
record types (li: Ai), and collection types [A]. In Links, col-
lection types are treated as multisets inside database queries
(reflecting SQL’s default multiset semantics), but represented
as lists during ordinary execution.

Expressions include standard constructs such as constants,
variables, record construction and field projection, condition-
als, functions and application. We freely use pair types (A,B)
and pair syntax (M,N) and projections M.1, M.2 etc., which
are easily definable using records. Constants c can be func-
tions such as integer addition, equality tests, etc.; their types
are collected in a signature Σ. In Links we write var x = M ;N
for binding a variable x to M in a N . The semantics of the
Links constructs discussed so far is call-by-value. The expres-
sion query {M} introduces a query block, whose content is
not evaluated in the usual call-by-value fashion but instead
first normalized to a form equivalent to an SQL query, and
then submitted to the database server. The resulting table
(or tables, in the case of a nested query result) are then
translated into a Links value. Queries can be constructed
using the expressions for the empty collection [], singleton
collection [M], and concatenation of collections M ++ N . In
addition, the comprehension expressions for(x <-- M) N and
for(x <- M) L allow us to form queries involving iteration over
a collection. The difference between the two expressions is
that for(x <-- M) expects M to be a table reference, whereas
for(x <- M) expects M to be a collection. The expression
where (M) N is essentially equivalent to if (M) {N} else {[]},

Const
Σ(c) = A

Γ ` c : A

Var
x : A ∈ Γ

Γ ` x : A

Record
Γ `Mi : Ai

Γ ` (li = Mi)
n
i=1 : (li : Ai)

Projection
Γ `M : (li : Ai)

n
i=1

Γ `M .lk : Ak

Fun
Γ, [xi : Ai]

n
i=1 `M : B

Γ ` fun (xi|ni=1){M} : (Ai|ni=1) -> B

App
Γ `M : (Ai|ni=1) -> B Γ ` Ni : Ai (i ∈ {1, . . . , n})

Γ `M(Ni|ni=1) : B

Var
Γ `M : A Γ, x : A ` N : B

Γ ` var x = M ;N : B

Query
Γ `M : [A] A :: QType

Γ ` query {M} : [A]

Empty
Γ `M : [A]

Γ ` empty(M) : Bool

Table
R :: BaseRow

Γ ` table n with (R) : table(R)

Empty-List

Γ ` [] : [A]

List
Γ `M : A

Γ ` [M] : [A]

Concat
Γ `M : [A] Γ ` N : [A]

Γ `M ++ N : [A]

For-List
Γ ` L : [A] Γ, x : A `M : [B]

Γ ` for (x <- L) M : [B]

Where
Γ `M : Bool Γ ` N : [B]

Γ ` where (M) N : [B]

For-Table
Γ ` L : table(R) Γ, x : (R) `M : [B]

Γ ` for (x <- L) M : [B]

Insert
Γ ` L : table(R) Γ `M : [(R)]

Γ ` insert L values M : ()

Update
Γ ` L : table(R) Γ, x : (R) `M : Bool Γ, x : (R) ` N : [(R)]

Γ ` update L where M set N : ()

Delete
Γ ` L : table(R) Γ, x : (R) `M : Bool

Γ ` delete L where M : ()

Figure 4: Typing rules for Links.

and is intended for use in filtering query results. The expres-
sion empty (M) tests whether the collection produced by M
is empty. These comprehension syntax constructs can also
be used outside a query block, but they are not guaranteed
to be translated to queries in that case. The insert, delete
and update expressions perform updates on database tables;
they are implemented by direct translation to the analogous
SQL update operations.

The type system (again a simplification of the full system)
is illustrated in Figure 4. Many rules are standard; we
assume a typing signature Σ mapping constants and primitive
operations to their types. The rule for query {M} refers to an
auxiliary judgment A :: QType that essentially checks that A
is a valid query result type, meaning that it is constructed
using base types and collection or record type constructors
only:

O :: QType

[Ai :: QType]ni=1

(li : Ai)
n
i=1 :: QType

A :: QType

[A] :: QType

Similarly, the R :: BaseRow judgment ensures that the types
used in a row are all base types:

· :: BaseRow
R :: BaseRow

R, l : O :: BaseRow

The full Links type system also checks that the body M
uses only features available on the database (and only calls
functions that satisfy the same restriction). The rules for
other query operations are straightforward, and similar to
those for monadic comprehensions in other systems. Finally,
the rules for updates (insert, update, and delete) are also
mildly simplified; in the full system, the conditions and
update expressions are required to be database-executable
operations. Lindley and Cheney (2012) presents a more
complete formalization of Links’s type system that soundly
characterizes the intended run-time behavior.

The core language of Links we are using is a simplification
of the full language in several respects. Links includes a

number of features (e.g. recursive datatypes, XML literals,
client/server annotations, and concurrency features) that are
important parts of its Web programming capabilities but
not needed to explain our contribution. Links also uses a
type-and-effect system to determine whether the code inside
a query block is translatable to SQL, and which functions
can be called safely from query blocks. We use a simplified
version of Links’s type system that leaves out these effects
and does not deal with polymorphism. Our implementation
does handle these features, with some limitations discussed
later.

2.2 Language-integrated query
Writing programs that interact with databases can be

tricky, because of mismatches between the models of com-
putation and data structures used in databases and those
used in conventional programming languages. The default
solution (employed by JDBC and other typical database
interface libraries) is for the programmer to write queries
or other database commands as uninterpreted strings in the
host language, and these are sent to the database to be ex-
ecuted. This means that the types and names of fields in
the query cannot be checked at compile time and any errors
will only be discovered as a result of a run-time crash or
exception. More insidiously, failure to adequately sanitize
user-provided parameters in queries opens the door to SQL
injection attacks (Shar and Tan 2013).

Language-integrated query is a technique for embedding
queries into the host programming language so that their
types can be checked statically and parameters are automat-
ically sanitized. Microsoft’s LINQ library, which provides
language-integrated query for .NET languages, is a popular
feature of C# and F#. Broadly, there are two common
approaches to language-integrated query. The first approach,
which we call SQL embedding, adds specialized constructs re-
sembling SQL queries to the host language, so that they can
be typechecked and handled correctly by the program. This is

Agencies

(oid) name based in phone

1 EdinTours Edinburgh 412 1200
2 Burns’s Glasgow 607 3000

ExternalTours
(oid) name destination type price in £

3 EdinTours Edinburgh bus 20
4 EdinTours Loch Ness bus 50
5 EdinTours Loch Ness boat 200
6 EdinTours Firth of Forth boat 50
7 Burns’s Islay boat 100
8 Burns’s Mallaig train 40

Figure 5: Example input data

the approach taken in C# (Meijer et al. 2006), SML# (Ohori
and Ueno 2011), and Ur/Web (Chlipala 2015). The second
approach, which we call comprehension, uses monadic com-
prehensions or related constructs of the host language, and
generates queries from such expressions. The comprehen-
sion approach builds on foundations for querying databases
using comprehensions developed by Buneman et al. (1995),
and has been adopted in languages such as F# (Syme 2006)
and Links (Cooper et al. 2007) as well as libraries such as
Database-Supported Haskell (Giorgidze et al. 2011).

The advantage of the comprehension approach is that it
provides a higher level of abstraction for programmers to
write queries, without sacrificing performance. This advan-
tage is critical to our work, so we will explain it in some
detail. For example, the query shown in Figure 1 illustrates
Links comprehension syntax. It asks for the names and phone
numbers of all agencies having an external tour of type ”boat”.
The keyword for performs a comprehension over a table (or
other collection), and the where keyword imposes a Boolean
condition filtering the results. The result of each iteration
of the comprehension is a singleton collection containing the
record (name = e.name,phone = a.phone).

Monadic comprehensions do not always correspond exactly
to SQL queries, but under certain reasonable assumptions, it
is possible to normalize these comprehension expressions to
a form that is easily translatable to SQL. For example, the
following query

var q1’ = query {
for (e <-- externalTours)
where (e.type == ”boat”)
for (a <-- agencies)
where (a.name == e.name)
[(name = e.name, phone = a.phone)]

}

does not directly correspond to a SQL query due to the
alternation of for and where operations; nevertheless, query
normalization generates a single equivalent SQL query in
which the where conditions are both pushed into the SQL
query’s WHERE clause:

SELECT e.name AS name, a.phone AS phone

FROM ExternalTours e, Agencies a

WHERE e.type = ’boat’ AND a.name = e.name

Normalization frees the programmer to write queries in more
natural ways, rather than having to fit the query into a
pre-defined template expected by SQL.

However, this freedom can also lead to problems, for ex-
ample if the programmer writes a query-like expression that

contains an operation, such as print or regular expression
matching, that cannot be performed on the database. In
early versions of Links, this could lead to unpredictable per-
formance, because queries would unexpectedly be executed
on the server instead of inside the database. The current
version uses a type-and-effect system (as described by Cooper
(2009) and Lindley and Cheney (2012)) to track which parts
of the program must be executed in the host language and
which parts may be executed on the database. Using the
query keyword above forces the typechecker to check that
the code inside the braces will successfully execute on the
database.

2.3 Higher-order functions and nested query
results

Although comprehension-based language-integrated query
may seem (at first glance) to be little more than a nota-
tional convenience, it has since been extended to provide
even greater flexibility to programmers without sacrificing
performance.

The original results on normalization (due to Wong (1996))
handle queries over flat input tables and producing flat result
tables, and did not allow calling user-defined functions inside
queries. Subsequent work has shown how to support higher-
order functions (Cooper 2009; Grust and Ulrich 2013) and
queries that construct nested collections (Cheney et al. 2014c).
For example, we can use functions to factor the previous
query into reusable components, provided the functions are
nonrecursive and only perform operations that are allowed
in the database.

fun matchingAgencies(name) {
for (a <-- agencies)
where (a.name == name)
[(name = e.name, phone = a.phone)]

}
var q1’’ = query {
for (e <-- externalTours)
where (e.type == ”boat”)
matchingAgencies(e.name)

}

Cooper’s results show that these queries still normalize to
SQL-equivalent queries, and this algorithm is implemented
in Links. Similarly, we can write queries whose result type is
an arbitrary combination of record and collection types, not
just a flat collection of records of base types as supported by
SQL:

var q2 = query {
for (a <-- agencies)
[(name = a.name,

tours = for (e <-- externalTours)
where (e.name == a.name)
[(dest = e.destination, type = e.type)]

}

This query produces records whose second tours component
is itself a collection — that is, the query result is of the
type [(name:String,[(dest:String, type:Type)])] which contains
a nested occurrence of the collection type constructor [].
SQL does not directly support queries producing such nested
results — it requires flat inputs and query results.

Our previous work on query shredding (Cheney et al. 2014c)
gives an algorithm that evaluates queries with nested results
efficiently by translation to SQL. Given a query whose return
type contains n occurrences of the collection type constructor,

query shredding generates n SQL queries that can be evalu-
ated on the database, and constructs the nested result from
the resulting tables. This is typically much more efficient
than loading the database data into memory and evaluating
the query there. Links supports query shredding and we will
use it in this paper to implement lineage.

Both capabilities, higher-order functions and nested query
results, are essential building blocks for our approach to
provenance. In what follows, we will use these techniques
without further explanation of their implementation. The
details are covered in previous papers (Cooper 2009; Lindley
and Cheney 2012; Cheney et al. 2014c), but are not needed
to understand our approach.

2.4 Where-provenance and lineage
As explained in the introduction, provenance tracking has

been explored extensively for queries in the database commu-
nity. We are now in a position to explain how these prove-
nance techniques can be implemented on top of language-
integrated query in Links. We review two of the most common
forms of provenance, and illustrate our approach using ex-
amples; the rest of the paper will use similar examples to
illustrate our implementation approach.

Where-provenance is information about where informa-
tion in the query result “came from” (or was copied from) in
the input. Buneman et al. (2001) introduced this idea; our
approach is based on a later presentation for the nested rela-
tional calculus by Buneman et al. (2008). A common reason
for asking for where-provenance is to identify the source of
incorrect (or surprising) data in a query result. For exam-
ple, if a phone number in the result of the example query
is incorrect, we might ask for its where-provenance. In our
system, this involves modifying the input table declaration
and query as follows:

var agencies = table ”Agencies”
with (name:String, based in:String, phone:String)
where phone prov default

The annotation phone prov default says to assign phone num-
bers the“default”provenance annotation of the form (Agencies,

phone, i) where i is the object id (oid) of the corresponding
row. The field value will be of type Prov(String); the data
value can be accessed using the keyword data and the prove-
nance can be accessed using the keyword prov, as follows:

var q1’’’ = query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name && e.type == ”boat”)
[(name = e.name,
phone = data a.phone, p phone = prov a.phone)]

}

The result of this query is as follows:

name phone p phone

EdinTours 412 1200 (Agencies,phone,1)

EdinTours 412 1200 (Agencies,phone,1)

Burns’s 607 3000 (Agencies,phone,2)

Why-provenance is information that explains “why” a
result was produced. In a database query setting, this is
usually taken to mean a justification or witness to the query
result, that is, a subset of the input records that includes
all of the data needed to generate the result record. Ac-
tually, several related forms of why-provenance have been

studied (Cui et al. 2000; Buneman et al. 2001; Cheney et al.
2009; Glavic et al. 2013), however, many of these only make
sense for set-valued collections, whereas Links currently sup-
ports multiset semantics. In this paper, we focus on a simple
form of why-provenance called lineage which is applicable to
either semantics.

Intuitively, the lineage of a record r in the result of a query
is a subset L of the records in the underlying database db
that “justifies” or “witnesses” the fact that r is in the result
of Q on db. That is, running Q on the lineage L should
produce a result containing r, i.e. r ∈ Q(L). Obviously,
this property can be satisfied by many subsets of the input
database, including the whole database db, and this is part
of the reason why there exist several different definitions
of why-provenance (for example, to require minimality). A
common approach is to define the lineage to be the set of all
input database records accessed in the process of producing
r; this is a safe overapproximation to the minimal lineage,
and usually is much smaller than the whole database.

We identify records in input database tables using pairs
such as (AgencyTours,2) where the first component is the table
name and the second is the row id, and the lineage of an
element of a collection is just a collection of such pairs.
(Again, this has the benefit that we can use a single type
for references to data in multiple input tables.) Using this
representation, the lineage for q1 is as follows:

name phone lineage

EdinTours 412 1200 [(Agencies,1),(ExternalTours,5)]

EdinTours 412 1200 [(Agencies,1),(ExternalTours,6)]

Burns’s 607 3000 [(Agencies,2),(ExternalTours,7)]

In our system, to obtain these results we simply use the
keyword lineage instead of query; for example, for q1 we would
simply write:

lineage {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name && e.type == ”boat”)
[(name = e.name,
phone = a.phone)]

}

Links’s capabilities for normalizing and efficiently evaluat-
ing queries provide the key ingredients needed for computing
provenance. For both where-provenance and lineage, we can
translate programs using the extensions described above, in a
way that both preserves types and ensures that the resulting
query expressions can be converted to SQL queries. In the
rest of this paper, we give the details of these translations
and present an experimental evaluation showing that its
performance is reasonable.

3. PROVENANCE TRANSLATIONS
In this section we present the key technical contributions of

this paper. We present two extensions of Links: LinksW, which
supports where-provenance in queries, and LinksL, which
supports lineage in queries. We show that both extensions
can be implemented by a type-preserving source-to-source
translation to plain Links.

Prov
Γ `M : Prov(A)

Γ ` prov M : (String, String, Int)

Data
Γ `M : Prov(A)

Γ ` data M : A

Table
R :: BaseRow Γ ` S : ProvSpec(R)

Γ ` table n with (R) where S : table(R . S)

Γ ` · : ProvSpec(R)

Γ ` S : ProvSpec(R)

Γ ` S, l prov default : ProvSpec(R)

Γ ` S : ProvSpec(R) Γ `M : (R) -> (String,String, Int)

Γ ` S, l prov M : ProvSpec(R)

R . · = R (R, l : O) . (S, l prov s) = (R . S), l : Prov(O)

Figure 6: Additional typing rules for LinksW.

WJOK = O

WJA -> BK = WJAK -> WJBK
WJ(li : Ai)

n
i=1K = (li : WJAiK)ni=1

WJ[A]K = [WJAK]
WJProv(A)K = (data : WJAK, prov : (String,String, Int))

WJtable(R)K = (table(‖R‖), () -> [WJ(R)K])
‖O‖ = O

‖Prov(A)‖ = ‖A‖
‖li : Ai|ni=1‖ = li : ‖Ai‖|ni=1

Figure 7: Type translation and erasure.

3.1 Where-Provenance
LinksW extends Links with support for where-provenance.

The syntax shown in Figure 3 is extended as follows:

O ::= · · · | Prov(O)

L,M,N ::= · · · | data M | prov M

| table n with (R) where S

S ::= · | S, l prov s

s ::= default |M

We introduce the type constructor Prov(O), where O is a
type argument of base type. We treat Prov(O) itself as a
base type, so that it can be used as part of a table type.
(This is needed for initializing provenance as explained below.)
Values of type Prov(O) are annotated with where-provenance,
where the annotation consists of a triple (R, f, i) where R
is the source table name, f is the field name, and i is the
row identifier. For example, 42 #(”QA”, ”a”, 23) represents the
answer 42, of type Prov(Int) which was copied from row 23,
column a, of table QA. We print the provenance of a value
as a comment (following #) to indicate that it can not be
directly entered into LinksW. The type Prov(O) is abstract,
without a visible constructor, so only the LinksW runtime can
construct values of provenance type.

There are two operations on values with provenance type:
data N extracts the data value of some expression N ; simi-
larly, prov N extracts its argument’s where-provenance triple.

In addition, we extend the syntax of table expressions to
allow a list of provenance initialization specifications l prov s.

A specification s is either the keyword default or an ex-
pression M which is expected to be of type (li : Oi) ->

(String,String, Int). We have three kinds of columns: (1) reg-
ular columns with labels lr where r is in some set of in-
dices R. For these columns we do not compute provenance.
(2) Columns with default where-provenance have labels ld
where d ∈ D. For these columns we compute provenance de-
rived from their location in the database given by table name,
column name, and the row’s oid. (3) Columns with external
where-provenance have labels le where e ∈ E . For these
columns we obtain provenance by calling a user-provided
function with the row as input. Such user-defined prove-
nance calculation functions have to be pure and database-
executable, but they are otherwise free to do whatever they
want. The envisioned use is fetching existing provenance
metadata that is stored separately from the actual data.

The typing rules for the new constructs of LinksW are shown
in Figure 6. These rules employ an auxiliary judgment Γ `
S : ProvSpec(R), meaning that in context Γ, the provenance
specification S is valid with respect to record type R. As
suggested by the typing rule, the prov keyword extracts the
provenance from a value of type Prov(A), and data extracts
its data, the A-value. The most complex rule is that for the
table construct. The rule for typing table references also
uses an auxiliary operation R . S that defines the type of
the provenance view of a table whose fields are described by
R and whose provenance specification is S. As for ordinary
tables, we check that the fields are of base type.

We give the semantics of LinksW by a translation to Links.
The syntactic translation of types WJ−K is shown in Fig-
ure 7. We write WJΓK for the obvious extension of the type
translation to contexts. The implementation extends the
Links parser and type checker, and desugars the LinksW AST
to a Links AST after type checking, reusing the backend
mostly unchanged. The expression translation function is
also written WJ−K and is shown in Figure 8.

Values of type Prov(O) are represented at runtime in Links
as ordinary records with type (data: O,prov: (String, String, Int)).
Thus, the keywords data and prov translate to projections to
the respective fields.

We translate table declarations to pairs. The first com-
ponent is a simple table declaration where all columns have
their primitive underlying non-provenance type. We will
use the underlying table declaration for insert, update, and
delete operations. The second component is essentially a
delayed query that calculates where-provenance for the entire
table. (The fact that it is delayed is important here, because
it means that it can be inlined and simplified later, rather
than loaded into memory.) We compute provenance for each
record by iterating over the table. For every record of the
input table, we construct a new record with the same fields
as the table. For every column with provenance, the field’s
value is a record with data and prov fields. The data field is
just the value. The translation of table references also uses
an auxiliary operation R .nx S which, given a row type R, a
table name n, a variable x and a provenance specification S,
constructs a record in which each field contains data from x
along with the specified provenance (if any). We wrap the
iteration in an anonymous function to delay execution: oth-
erwise, the provenance-annotated table would be constructed
in memory when the table reference is first evaluated. We
will eventually apply this function in a query, and the Links
query normalizer will inline the provenance annotations and

WJcK = c

WJxK = x

WJ(li = Mi)
n
i=1K = (li = WJMiK)ni=1

WJN.lK = WJNK.l
WJfun(xi|ni=1) {M}K = fun(xi|ni=1) {WJMK}

WJM(Ni)K = WJMK(WJNiK)
WJvar x = M ;NK = var x = WJMK;WJNK

WJquery {M}K = query {WJMK}
WJ[]K = []

WJ[M]K = [WJMK]
WJM ++ NK = WJMK ++ WJNK

WJif (L) {M} else {N}K = if (WJLK) {WJMK} else {WJNK}
WJempty (M)K = empty (WJMK)

WJfor (x <- L) MK = for (x <- WJLK) WJMK
WJwhere(M) NK = where(WJMK) WJNK

WJfor (x <- L) MK = for (x <- WJLK.2()) WJMK
WJdata MK = WJMK.data
WJprov MK = WJMK.prov

WJinsert L values MK = insert WJLK.1 values WJMK
WJupdate (x <- L) where M set NK = update (x <- WJLK.1) where WJMK set WJNK

WJdelete (x <- L) where MK = delete (x <- WJLK.1) where WJMK

WJtable n with(R)where SK = (table n with (R), fun(){for(x <- table n with (R))[(R .nx S)]})

· .nx · = · (R, l : Prov(O)) .nx (S, l prov default) = (R .nx S), l = (data = x.l, prov = (n, ld, x.oid))

(R, l : O) .nx · = (R .x ·), l = x.l (R, l : Prov(O)) .nx (S, l prov M) = (R .nx S), l = (data = x.l, prov = WJMK(x))

Figure 8: Translation of LinksW to Links, and auxiliary operation R .nx S

normalize them along with the rest of the query.
We translate table comprehensions to comprehensions over

the second component of a translated table declaration. Since
that component is a function, we have to apply it to a (unit)
argument.

For example, recall the example query q1’’ from Section 2.
The table declaration translates as follows:

var agencies = (table ”Agencies”
with (name:String, based in:String, phone:String),

fun () { for (t <-- table ”Agencies”
with (name:String, based in:String, phone:String))

[(name:t.name, based in:t.based in,
phone=(data=t.phone,prov=(”Agencies”,”phone”,t.oid)))] })

The translation of the externalTours table reference is similar,
but simpler, since it has no prov annotations. The query
translates to

query {
for (a <-- agencies.2())
for (e <-- externalTours.2())
where (a.name == e.name && e.type == ”boat”)
[(name = e.name,
phone = a.phone.data, p prov = a.phone.prov)]

}

Moreover, after inlining the adjusted definitions of agencies

and externalTours and normalizing, the provenance computa-
tions in the delayed query agencies.2 are also inlined, resulting
in a single SQL query.

The (intended) correctness property of the where-provenance
translation is that it preserves well-formedness, as follows:

Theorem 1. For every LinksW term M :

Γ `LinksW M : A⇒WJΓK `Links WJMK : WJAK

The proof is straightforward by induction on the structure
of derivations; the only interesting cases are those for com-
prehensions and updates, since they illustrate the need for
both the plain table reference and its provenance view.

We have modeled the definition of the where-provenance
translation directly on the approach of Buneman et al. (2008)
(modulo changes of notation), so we do not formally state or
prove the equivalence of the two definitions.

DJOK = O

DJA -> BK = (DJAK -> DJBK,LJAK -> LJBK)
DJ(li : Ai)

n
i=1K = (li : DJAiK)ni=1

DJ[A]K = [DJAK]
DJtable(R)K = (table(R), () -> LJ[(R)]K)

LJOK = O

LJA -> BK = LJAK -> LJBK
LJ(li : Ai)

n
i=1K = (li : LJAiK)ni=1

LJ[A]K = [(data : LJAK, prov : [(String, Int)])]

LJtable(R)K = LJ[(R)]K

Figure 9: Doubling and lineage translations

Lineage
Γ `M : [A] A :: QType

Γ ` lineage {M} : LJ[A]K

Figure 10: Additional typing rule for LinksL

3.2 Lineage
LinksL adds the lineage keyword to Links. The syntax is

extended as follows:

L,M,N ::= · · · | lineage{M}

The expression lineage {M} is similar to query {M}, in that M
must be an expression that can be executed on the database
(that is, terminating and side-effect free; this is checked by
Links’s effect type system just as for query {M}). However,
instead of executing the query normally, lineage {M} also
computes lineage for each record in the result. If M has
type [A] (which must be an appropriate query result type)
then the type of the result of lineage {M} will be LJ[A]K,
where LJ−K is a type translation that adjusts the types of
collections [A] to allow for lineage, as shown in Figure 10.

The syntactic translation of LinksL types is shown in Fig-
ure 9. We write DJΓK and LJΓK for the obvious extensions
of these translations to contexts. The translation of LinksL

LJcK = c

LJxK = x

LJ(li = Mi)
n
i=1K = (li = LJMiK)ni=1

LJN.lK = LJNK.l
LJfun(xi|ni=1) {M}K = (fun(xi|ni=1) {LJMK})

LJM(Ni|ni=1)K = LJMK(LJNiK|ni=1)

LJvar x = M ;NK = var x = LJMK;LJNK
LJquery {M}K = query {LJMK}

LJ[]K = []

LJ[M]K = [(data : LJMK, prov : [])]

LJM ++ NK = LJMK ++ LJNK

LJif (L) {M} else {N}K = if (LJLK) {LJMK} else {LJNK}
LJquery {M}K = query {LJMK}
LJempty (M)K = empty (LJMK)

LJfor (x <- L) MK = for (y <- LJLK)
for (z <- LJMK[x 7→ y.data])

[(data = z.data, prov = y.prov ++ z.prov)]

LJwhere(M) NK = where(LJMK) (LJNK)
LJfor (x <- L) MK = for (y <- LJLK)

for (z <- LJMK[x 7→ y.data])
[(data = z.data, prov = y.prov ++ z.prov)]

LJlineage {M}K = query {LJMK}

DJcK = c

DJxK = x

DJ(li = Mi)
n
i=1K = (li = DJMiK)ni=1

DJN.lK = DJNK.l
DJfun(xi|ni=1) {M}K = (fun(xi|ni=1) {DJMK},

L∗Jfun(xi|ni=1) {M}K)
DJM(Ni|ni=1)K = DJMK.1(DJNiKni=1)

DJvar x = M ;NK = var x = DJMK;DJNK
DJ[]K = []

DJ[M]K = [DJMK]
DJM ++ NK = DJMK ++ DJNK

DJif (L) {M} else {N}K = if (DJLK) {DJMK} else {DJNK}
DJquery {M}K = query {DJMK}
DJempty (M)K = empty (DJMK)

DJfor (x <- L) MK = for (x <- DJLK) DJMK
DJwhere(M) NK = where(DJMK) DJNK

DJfor (x <- L) MK = for (x <- DJLK.1) DJMK
DJinsert L values MK = insert DJLK.1 values DJMK

DJupdate (x <- L) where M set DJNK = update (x <- DJLK.1) where DJMK set NK
DJdelete (x <- L) where MK = delete (x <- DJLK.1) where DJMK

DJlineage {M}K = query {L∗JMK}

LJtable n with(R)K = for(x <- table n with (R))[(data = x, prov = [(n, x.oid)])]

DJtable n with(R)K = (table n with (R), fun(){LJtable n with(R)K})

L∗JMK = LJMK[xi 7→ d2lJAiK(xi)|ni=1] where x1 : A1, . . . , xn : An are the free variables of M

d2lJAK : DJAK→ LJAK
d2lJOK(x) = x

d2lJA -> BK(f) = f.2

d2lJ(l1 : A1, . . . , ln : An)K(x) = (l1 : d2lJA1K(x.l1), . . . , ln : d2lJAnK(x.ln))

d2lJ[A]K(y) = for(x <- y)[(data = d2lJAK(x), prov = [])]

d2lJtable(R)K(t) = t.2()

Figure 11: Translation of LinksL to Links: type translation, outer translation, and inner translation and term
translation

expressions to Links is shown in Figure 11. It operates in two
modes: D and L. We translate ordinary Links programs us-
ing the translation DJ−K. When we reach a lineage block, we
switch to using the LJ−K translation. LJ[M]K provides initial
lineage for list literals. Their lineage is simply empty. Table
comprehension is the most interesting case. We translate a
table iteration for (x <-- L) M to a nested list comprehension.
The outer comprehension binds y to the results of the lineage-
computing view of L. The inner comprehension binds a fresh
variable z, iterating over LJMK—the original comprehension
body M transformed using L. The original comprehension
body M is defined in terms of x, which is not bound in
the transformed comprehension. We therefore replace every
occurrence of x in LJeK by y.data. In the body of the nested
comprehension we thus have y, referring to the table row
annotated with lineage, and z, referring to the result of the
original comprehension’s body, also annotated with lineage.
As the result of our transformed comprehension, we return
the plain data part of z as our data, and the combined lin-

eage annotations of y and z as our provenance. (Handling
where-clauses is straightforward, as shown in Figure 11.)

One subtlety here is that lineage blocks need not be closed,
and so may refer to variables that were defined (and will be
bound to values at run time) outside of the lineage block.
This could cause problems: for example, if we bind x to a
collection [1, 2, 3] outside a lineage block and refer to it in a
comprehension inside such a block then uses of x will expect
the collection elements to be records such as (data = 1, prov =
L) rather than plain numbers. Therefore, such variables need
to be adjusted so that they will have appropriate structure to
be used within a lineage block. The auxiliary type-indexed
function d2lJAK accomplishes this by mapping a value of type
DJAK to one of type LJAK. We define L∗J−K as a function
that applies LJ−K to its argument and substitutes all free
variables x : A with d2lJAK(x).

The DJ−K translation also has to account for functions
that are defined outside lineage blocks but may be called
either outside or inside a lineage block. To support this,

the case for functions in the DJ−K translation creates a pair,
whose first component is the recursive DJ−K translation of
the function, and whose second component uses the L∗J−K
translation to create a version of the function callable from
within a lineage block. (We use L∗J−K because functions also
need not be closed.) Function calls outside lineage blocks are
translated to project out the first component; function calls
inside such blocks are translated to project out the second
component (this is actually accomplished via the A -> B
case of d2l.)

Finally, notice that the DJ−K translation maps table types
and table references to pairs. This is similar to the WJ−K
translation, so we do not explain it in further detail; the
main difference is that we just use the oid field to assign
default provenance to all rows.

For example, if we wrap the query from Figure 1 in a
lineage block it will be rewritten to this:

for (y a <- agencies.2())
for (z a <- for (y e <- externalTours.2())

for (z e <- [(data = (name = y a.data.name,
phone = y a.data.phone),

prov = [])])
where (y a.data.name == y e.data.name

&& y e.data.type == ”boat”)
[(data = z e.data,
prov = y e.prov ++ z e.prov)])

[(data = z a.data, prov = y a.prov ++ z a.prov)]

Once agencies and externalTours are inlined, Links’s built-in
normalization algorithm simplifies this query to:

for (y a <- table ”Agencies” with ...)
for (y e <- table ”ExternalTours” with ...)
where (y a.data.name == y e.data.name

&& y e.data.type == ”boat”)
[(data = (name = y a.data.name,phone = y a.data.phone),
prov = [(”Agencies”, y a.oid), (”ExternalTours”,y e.oid)])]

The (again, intended) correctness property for the transla-
tion from LinksL to Links is stated as follows:

Theorem 2. Let M be given such that Γ `LinksL M : A.
Then:

1. LJΓK `Links LJMK : LJAK

2. DJΓK `Links L∗JMK : LJAK

3. DJΓK `Links DJMK : DJAK

The proof of each part is straightforward by induction (notice
that DJ−K depends on LJΓK but not vice versa). The main
complication is the use of l2s in L∗J−K, and the cases for
functions and lineage which need to use the second induction
hypothesis. In the case of lineage, we use the fact that
DJAK = DJLJAKK, which follows because A :: QType so
cannot involve table or function types.

Our definition of lineage is inspired by previous presenta-
tions for database query languages such as nested relational
calculus (Foster et al. 2008); however, our approach differs
in considering multiset rather than set semantics. Relating
these definitions and is left for future work.

4. EXPERIMENTAL EVALUATION
We implemented two variants of Links with language-inte-

grated provenance, LinksW and LinksL, featuring our exten-
sions for where-provenance and lineage, respectively. Both
variants build on Links with query shredding as described

by Cheney et al. (2014c); they used queries against a simple
test database schema (see Figure 12) that models an organi-
zation with departments, employees and external contacts.
We change some of their benchmarks to return where-prove-
nance and provenance and compare against the same queries
without provenance.

Unlike Cheney et al. (2014c) our database does not include
an additional id field, instead we use PostgreSQL’s OIDs,
which are used for identification of rows in where-provenance
and lineage. We populate the databases at varying sizes
using randomly generated data in the same way Cheney et al.
(2014c) describe it: “We vary the number of departments
in the organization from 4 to 4096 (by powers of 2). Each
department has on average 100 employees and each employee
has 0–2 tasks.” The largest database, with 4096 depart-
ments, is 142 MB on disk when exported by pg_dump to a
SQL file (excluding OIDs). We create additional indices on
tasks(employee), tasks(task), employees(dept), and contacts(dept).

All tests were performed on an otherwise idle desktop
system with a quad-core CPU with 3.2 GHz, 8 GB RAM,
and a 500 GB HDD. The system ran Linux (kernel 4.5.0)
and we used PostgreSQL 9.4.2 as the database engine. Links
and its variants LinksW and LinksL are interpreters written in
OCaml, which were compiled to native code using OCaml
4.02.3.

4.1 Where-provenance
To be usable in practice, where-provenance should not

have unreasonable runtime overhead. We compare queries
without any where-provenance against queries that calculate
where-provenance on some of the result and queries that
calculate full where-provenance wherever possible. This
should give us an idea of the overhead of where-provenance
on typical queries, which are somewhere in between full and
no provenance.

The nature of where-provenance suggests two hypotheses:
First, we expect the asymptotic cost of where-provenance-
annotated queries to be the same as that of regular queries.
Second, since every single piece of data is annotated with a
triple, we expect the runtime of a fully where-provenance-
annotated query to be at most four times the runtime of an
unannotated query just for handling more data.

We only benchmark default where-provenance, that is
table name, column name, and the database-generated OID
for row identification. External provenance is computed by
user-defined database-executable functions and can thus be
arbitrarily expensive.

We use the queries with nested results from Cheney et al.
(2014c) and use them unchanged for comparison with the
two variants with varying amounts of where-provenance.

For full where-provenance we change the table declara-
tions to add provenance to every field, except the OID. This
changes the types, so we have to adapt the queries and some
of the helper functions. Figure 13 shows the benchmark
queries with full provenance. Note that for example query
Q2 maps the data keyword over the employees tasks before
comparing the tasks against ”abstract”. Query Q6 returns the
outliers in terms of salary and their tasks, concatenated with
the clients with a fake task ”buy”. Since the fake task is not
a database value it cannot have where-provenance. LinksW

type system prevents us from pretending it does. Thus, the
list of tasks has type [String], not [Prov(String)].

The queries with some where-provenance are derived from

table departments with (oid: Int, name: String)
table employees with (oid: Int, dept: String,

name: String, salary: Int)
table tasks with (oid: Int, employee: String, task: String)
table contacts with (oid: Int, dept: String,

name: String, client: Bool)

Figure 12: Benchmark database schema, c.f. Ch-
eney et al. (2014c).
Q1 : [(contacts: [(”client”: Prov(Bool), name: Prov(String))], ...
for (d <-- departments)
[(contacts = contactsOfDept(d),
employees = employeesOfDept(d),
name = d.name)]

Q2 : [(d: Prov(String))]
for (d <- q1())
where (all(d.employees, fun (e) {

contains(map(fun (x) { data x }, e.tasks), ”abstract”) }))
[(d = d.name)]

Q3 : [(b: [Prov(String)], e: Prov(String))]
for (e <-- employees)
[(b = tasksOfEmp(e), e = e.name)]

Q4 : [(dpt:Prov(String), emps:[Prov(String)])]
for (d <-- departments)
[(dpt = (d.name),
emps = for (e <-- employees)

where ((data d.name) == (data e.dept))
[(e.name)])]

Q5 : [(a: Prov(String), b: [(name: Prov(String), ...
for (t <-- tasks)
[(a = t.task, b = employeesByTask(t))]

Q6 : [(d: Prov(String), p: [(name: Prov(String), tasks: [String])])]
for (x <- q1())
[(d = x.name,
p = get(outliers(x.employees),

fun (y) { map(fun (z) { data z }, y.tasks) }) ++
get(clients(x.contacts), fun (y) { [”buy”] }))]

Figure 13: “allprov” benchmark queries used in ex-
periments

the queries with full provenance. Query Q1 drops provenance
from the contacts’ fields. Q2 returns data and provenance
separately. It does not actually return less information,
it is just less type-safe. Q3 drops provenance from the
employee. Q4 returns the employees’ provenance only, and
drops the actual data. Q5 does not return provenance on the
employees fields. Q6 drops provenance on the department.
(These queries make use of some auxiliary functions which
are included in the appendix.)
Setup. We have three LinksW programs, one for each level
of where-provenance annotations. For each database size, we
drop all tables and load a dump from disk, starting with 4096.
We then run LinksW three times, once for each program in
order all, some, none. Each of the three programs performs
and times its queries 5 times in a row and reports the median
runtime in milliseconds. The programs measure runtime
using the LinksW built-in function serverTimeMilliseconds which
in turn uses OCaml’s Unix.gettimeofday.
Data. Figure 14 shows our experimental results. We have
one plot for every query, showing the database size on the
x-axis and the median runtime over five runs on the y-axis.
Note that both axes are logarithmic. Measurements of full

Q1 Q2 Q3

Q4 Q5 Q6

10

100

1000

1

10

100

100

10000

10

1000

10

100

1000

100

1000

10000

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

4
0
9
6

Number of departments.

T
im

e
(m

s)
,
m
ed
ia
n
o
ve
r
5
ru
n
s.

prov allprov noprov someprov

Figure 14: Where-provenance query runtimes.

Query median runtime∗ in ms overall slowdown
allprov someprov noprov (geom mean)

Q1 6068 3653 1763 2.26
Q2 60 60 60 1.52
Q3 8100 8064 4497 1.88
Q4 1502 1214 573 2.8
Q5 6778 3457 2832 1.85
Q6 17874 18092 16716 1.22

Figure 15: Median runtimes for largest dataset (Q1
at 512 departments, Q5 at 1024 departments, Q6
at 2048 departments, others 4096 departments) and
geometric means of overall slowdowns

where-provenance are in black circles, no provenance are
yellow triangles, some provenance is blue squares. Based on
test runs we had to exclude some results for queries at larger
database sizes because the queries returned results that were
too large for Links to construct as in-memory values.

The graph for query Q2 looks a bit odd. This seems to be
due to Q2 not actually returning any data for some database
sizes, because for some of the (randomly generated) instances
there just are no departments where all employees have the
task ”abstract”.

The table in Figure 15 lists all queries with their median
runtimes with full, some, and no provenance. The time
reported is in milliseconds, for the largest database instance
that both variants of a query ran on. For most queries this is
4096; for Q1 it is 512, 1024 for Q5, and 2048 for Q6. Figure 15
also reports the slowdown of full where-provenance versus
no provenance as the geometric mean over all database sizes,
for each query. The slowdown ranges from 1.22 for query Q6
up to 2.8 for query Q4.
Interpretation. The graphs suggest that the asymptotic

cost of all three variants is the same, confirming our hypoth-
esis. This was expected, anything else would have suggested
a bug in our implementation.

The multiplicative overhead seems to be larger for queries
that return more data. Notably, for query Q2, which returns
no data at all on some of our test database instances, the
overhead is hardly visible. The raw amount of data returned
for the full where-provenance queries is three to four times
that of a plain query. Most strings are short names and
provenance adds two short strings and a number for table,
column, and row. The largest overhead is 2.8 for query Q4,
which exceeds our expectations due to just raw additional
data needing to be processed.

4.2 Lineage
We expect lineage to have different performance charac-

teristics than where-provenance. Unlike where-provenance,
lineage is conceptually set valued. A query with few actual
results could have huge lineage, because lineage is combined
for equal data. In practice, due to Links using multiset se-
mantics for queries, the amount of lineage is bounded by
the shape of the query. Thus, we expect lineage queries to
have the same asymptotic cost as queries without lineage.
However, the lineage translation still replaces single com-
prehensions by nested comprehensions that combine lineage.
We expect this to have a larger impact on performance than
where-provenance, where we only needed to trace more data
through a query.

Figure 16 lists the queries used in the lineage experiments.
For lineage, queries are wrapped in a lineage block. Our
implementation does not currently handle function calls in
lineage blocks automatically, so in our experiments we have
manually written lineage-enabled versions of the functions
employeesByTask and tasksOfEmp, whose bodies are wrapped
in a lineage block. We reuse some of the queries from the
where-provenance experiments, namely Q3, Q4, and Q5.
Queries AQ6, Q6N, and Q7 are inspired by query Q6, but
not quite the same. Queries QF3 and QF4 are two of the flat
queries from Cheney et al. (2014c). Query QC4 computes
pairs of employees in the same department and their tasks in
a “tagged union”. Again, these queries employ some helper
functions which are included in an appendix.

We use a similar experimental setup to the one for where-
provenance. We only use databases up to 1024 departments,
because most of the queries are a lot more expensive. Query
QC4 has excessive runtime even for very small databases.
Query Q7 ran out of memory for larger databases. We
excluded them from runs on larger databases.
Data. Figure 17 shows our lineage experiment results.
Again, we have one plot for every query, showing the database
size on the x-axis and the median runtime over five runs on
the y-axis. Both axes are logarithmic. Measurements with
lineage are in black circles, no lineage is shown as yellow
triangles.

The table in Figure 18 lists queries and their median
runtimes with and without lineage. The time reported is
in milliseconds, for the largest database instance that both
variants of a query ran on. For most queries this is 1024;
for Q7 it is 128, 16 for QC4, and 512 for QF3. The table
also reports the slowdown of lineage versus no lineage as the
geometric mean over all database sizes. (We exclude database
size 4 for the mean slowdown in QF4 which reported taking
0 ms for no lineage queries which would make the geometric

typename Lin(a) = (data: a, prov: [(row: Int, ”table”: String)]);

AQ6 : [Lin((department: String, outliers: [Lin((name: String, ...
for (d <- for (d <-- departments)

[(employees = for (e <-- employees)
where (d.name == e.dept)
[(name = e.name, salary = e.salary)],

name = d.name)])
[(department = d.name,
outliers = for (o <- d.employees)

where (o.salary > 1000000 || o.salary < 1000)
[o])]

Q3 : [Lin((b: [Lin(String)]), e: String)]
for (e <-- employees) [(b = tasksOfEmp(e), e = e.name)]

Q4 : [Lin((dpt: String, emps: [Lin(String)]))]
for (d <-- departments)
[(dpt = d.name,
emps = for (e <-- employees)

where (d.name == e.dept)
[(e.name)])]

Q5 : [Lin((a: String, b: [Lin((name: String, salary: Int, ...
for (t <-- tasks) [(a = t.task, b = employeesByTask(t))]

Q6N : [Lin((department: String, people:[Lin((name: String, ...
for (x <-- departments)
[(department = x.name,
people = (for (y <-- employees)

where (x.name == y.dept &&
(y.salary < 1000 || y.salary > 1000000))

[(name = y.name,
tasks = for (z <-- tasks)

where (z.employee == y.name)
[z.task])]) ++

(for (y <-- contacts)
where (x.name == y.dept && y.”client”)
[(name = y.dept, tasks = [”buy”])]))]

Q7 : [Lin((department: String, employee: (name: String, ...
for (d <-- departments)
for (e <-- employees)
where (d.name == e.dept && e.salary > 1000000 || e.salary < 1000)
[(employee = (name = e.name, salary = e.salary),
department = d.name)]

QC4 : [Lin((a: String, b: String, c: [Lin((doer: String, ...
for (x <-- employees)
for (y <-- employees)
where (x.dept == y.dept && x.name <> y.name)
[(a = x.name,
b = y.name,
c = (for (t <-- tasks)

where (x.name == t.employee)
[(doer = ”a”, task = t.task)]) ++
(for (t <-- tasks)
where (y.name == t.employee)
[(doer = ”b”, task = t.task)]))]

QF3 : [Lin((String, String))]
for (e1 <-- employees)
for (e2 <-- employees)
where (e1.dept == e2.dept && e1.salary == e2.salary

&& e1.name <> e2.name)
[(e1.name, e2.name)]

QF4 : [Lin(String)]
(for (t <-- tasks)
where (t.task == ”abstract”)
[t.employee]) ++

(for (e <-- employees)
where (e.salary > 50000)
[e.name])

Figure 16: Lineage queries used in experiments

AQ6 Q3 Q4

Q5 Q6N Q7

QC4 QF3 QF4

1

10

100

10

100

1000

10

1000

100

1000

10000

100

1000

10000

10

1000

1000

10000

100

10000

1

10

100

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

4 8 1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

Number of departments.

T
im

e
(m

s)
,
m
ed
ia
n
o
ve
r
5
ru
n
s.

prov lineage nolineage

Figure 17: Lineage query runtimes.

Query median runtime in ms overall slowdown
lineage nolineage (geom mean)

AQ6 493 108 3.8
Q3 4234 969 3.76
Q4 1208 125 7.55
Q5 13662 11851 1.25
Q6N 15200 7872 2.38
Q7 16766 1283 4.17
QC4 13291 4021 1.53
QF3 22298 2412 6.71
QF4 682 73 6.49

Figure 18: Median runtimes at largest dataset (Q7
at 128 departments, QC4 at 16 departments, QF3 at
512 departments, others at 1024 departments) and
geometric means of overall slowdowns

mean infinity.) The performance penalty for using lineage
ranges from query Q5 needing a quarter more time to query
Q4 being more than 7 times slower than its counterpart.
Interpretation. Due to Links multiset semantics, we do not
expect lineage to cause an asymptotic complexity increase.
The experiments confirm this. Lineage is still somewhat
expensive to compute, with slowdowns ranging from 1.25 to
more than 7 times slower. Further investigation of the SQL
queries generated by shredding is needed.

4.3 Threats to validity
Our test databases are only moderately sized. However, our

result sets are relatively large. Query Q1 for example returns
the whole database in a different shape. Links’ runtime
representation of values in general and database results in
particular has a large memory overhead. In practice, for
large databases we should avoid holding the whole result
in memory. This should reduce the overhead (in terms of

memory) of provenance significantly. (It is not entirely clear
how to do this in the presence of nested results and thus
query shredding.) In general, it looks like the overhead of
provenance is dependent on the amount of data returned. It
would be good to investigate this more thoroughly. Also, it
could be advantageous to represent provenance in a special
way. In theory we could store the relation and column name
in a more compact way, for example.

One of the envisioned main use cases of provenance is
debugging. Typically a user would filter a query anyway to
pin down a problem and thus only look at a small number of
results and thus also query less provenance. Our experiments
do not measure this scenario but instead compute provenance
for all query results eagerly. Thus, the slowdown factors we
showed represent worst case upper bounds that may not be
experienced in common usage patterns.

Our measurements do not include program rewriting time.
However, this time is only dependent on the lexical size of
the program and is thus fairly small and, most importantly,
independent of the database size. Since Links is interpreted,
it does not really make sense to distinguish translation time
from execution time, but both the where-provenance trans-
lation and the lineage translation could happen at compile
time, leaving only slightly larger expressions to be normalized
at runtime.

5. RELATED WORK
Buneman et al. (2001) gave the first definition of where-

provenance in the context of a semistructured data model.
The DBNotes system of Bhagwat et al. (2005) supported
where-provenance via SQL query extensions. DBNotes pro-
vides several kinds of where-provenance in conjunctive SQL
queries, implemented by translating SQL queries to one or
more provenance-propagating queries. Buneman et al. (2008)
proposed a where-provenance model for nested relational cal-
culus queries and updates, and proved expressiveness results.
They observed that where-provenance could be implemented
by translating and normalizing queries but did not imple-
ment this idea; our approach to where-provenance in LinksW

is directly inspired by that idea and is (to the best of our
knowledge) the first implementation of it. One important dif-
ference is that we explicitly manage where-provenance via the
Prov type, and allow the programmer to decide whether to
track provenance for some, all or no fields. Our approach also
allows inspecting and comparing the provenance annotations,
which Buneman et al. (2008) did not allow; nevertheless, our
type system prevents the programmer from forging or unin-
tentionally discarding provenance. On the other hand, our
approach requires manual data and prov annotations because
it distinguishes between raw data and provenance-annotated
data.

LinksL is inspired by prior work on lineage (Cui et al. 2000)
and why-provenance (Buneman et al. 2001). There have
been several implementations of lineage and why-provenance.
Cui and Widom implemented lineage in a prototype data
warehousing system called WHIPS. The Trio system of Ben-
jelloun et al. (2008) also supported lineage and used it for
evaluating probabilistic queries; lineage was implemented
by defining customized versions of database operations via
user-defined functions, which are difficult for database sys-
tems to optimize. Glavic and Alonso (2009b) introduced the
Perm system, which translated ordinary queries to queries
that compute their own lineage; they handled a larger sub-

language of SQL than previous systems such as Trio, and
subsequently Glavic and Alonso (2009a) extended this ap-
proach to handle queries with nested subqueries (e.g. SQL’s
EXISTS, ALL or ANY operations). They implemented these
rewriting algorithms inside the database system and showed
performance improvements of up to 30 times relative to Trio.
Our approach instead shows that it is feasible to perform
this rewriting outside the database system and leverage the
standard SQL interface and underlying query optimization
of relational databases.

Both LinksW and LinksL rely on the conservativity and query
normalization results that underly Links’s implementation of
language-integrated query, particularly Cooper’s work (2009)
extending conservativity to queries involving higher-order
functions, and previous work by Cheney et al. (2014c) on
“query shredding”, that is, evaluating queries with nested
results efficiently by translation to equivalent flat queries.
There are alternative solutions to this problem that support
larger subsets of SQL, such as Grust et al.’s loop-lifting
(2010) and more recent work on query flattening (Ulrich and
Grust 2015), and it would be interesting to evaluate the
performance of these techniques on provenance queries.

Other authors, starting with Green et al. (2007), have
proposed provenance models based on annotations drawn
from algebraic structures such as semirings. While initially
restricted to conjunctive queries, the semiring provenance
model has subsequently been extended to handle negation
and aggregation operations (Amsterdamer et al. 2011). Kar-
vounarakis et al. (2010) developed ProQL, an implementation
of the semiring model in a relational database via SQL query
extensions. Glavic et al. (2013) present further details of
the Perm approach described above, show that semiring
provenance can be extracted from Perm’s provenance model,
and also describe a row-level form of where-provenance. We
believe that semiring polynomial annotations can also be ex-
tracted from lineage in Links, but supporting other instances
of the semiring model via query rewriting in Links appears
to be nontrivial due to the need to perform aggregation. In
future work, we intend to increase the expressiveness of Links
queries to include aggregation and grouping operations and
strengthen the query normalization results accordingly.
LinksW and LinksL are currently separate extensions, and

cannot be used simultaneously, so another natural area for
investigation is supporting multiple provenance models at
the same time. We have not yet investigated this and it
is not clear whether it is straightforward or difficult; one
possible difficulty may be the need to combine multiple type
translations. We intend to explore this (as well as consider
alternative models). Cheney et al. (2014a) presented a gen-
eral form of provenance for nested relational calculus based
on execution traces, and showed how such traces can be
used to provide “slices” that explain specific results. While
this model appears to generalize all of the aforementioned
approaches, it appears nontrivial to implement by translation
to relational queries, because it is not obvious how to repre-
sent the traces in this approach in a relational data model.
(Giorgidze et al. (2013) show how to support nonrecursive
algebraic data types in queries, but the trace datatype is
recursive.) This would be a challenging area for future work.

Our translation for lineage is similar in some respects to
the doubling translation used in Cheney et al. (2014b) to
compile a simplified form of Links to a F#-like core language.
Both translations introduce space overhead and overhead for

normal function calls due to pair projections. Developing a
more efficient alternative translation (perhaps in combination
with a more efficient and more complete compilation strategy)
is an interesting topic for future work.

6. CONCLUSIONS
Our approach shows that it is feasible to implement prove-

nance by rewriting queries outside the database system, so
that a standard database management system can be used.
By building on the well-developed theory of query normaliza-
tion that underlies Links’s approach to language-integrated
query, our translations remain relatively simple, while still
being translated to SQL queries that are executed efficiently
on the database. To the best of our knowledge, our ap-
proach is the first efficient implementation of provenance for
nested query results or for queries that can employ first-class
functions; at any rate, SQL does not provide either feature.
Links is a research prototype language, but the underly-

ing ideas of our approach could be applied to other sys-
tems that support comprehension-based language-integrated
query, such as F# and Database Supported Haskell. There
are a number of possible next steps, including extending
Links’s language-integrated query capabilities to support
richer queries and more forms of provenance. Our results
show that provenance for database queries can be imple-
mented efficiently and safely at the language-level. This
is a promising first step towards systematic programming
language support for provenance.

References
Y. Amsterdamer, D. Deutch, and V. Tannen. Provenance for

aggregate queries. In PODS 2011, pages 153–164, 2011.

O. Benjelloun, A. D. Sarma, A. Y. Halevy, M. Theobald,
and J. Widom. Databases with uncertainty and lineage.
VLDB J., 17(2):243–264, 2008.

D. Bhagwat, L. Chiticariu, W. C. Tan, and G. Vijayvargiya.
An annotation management system for relational databases.
VLDB J., 14(4):373–396, 2005.

P. Buneman, S. A. Naqvi, V. Tannen, and L. Wong. Princi-
ples of programming with complex objects and collection
types. Theor. Comp. Sci., 149(1):3–48, 1995.

P. Buneman, S. Khanna, and W.-C. Tan. Why and where:
A characterization of data provenance. In ICDT 2001,
number 1973 in LNCS, pages 316–330. Springer Berlin /
Heidelberg, 2001.

P. Buneman, J. Cheney, and S. Vansummeren. On the
expressiveness of implicit provenance in query and update
languages. ACM Trans. Database Syst., 33(4):28:1–28:47,
Dec. 2008.

J. Cheney, L. Chiticariu, and W.-C. Tan. Provenance in
databases: Why, how, and where. Foundations and Trends
in Databases, 1(4):379–474, Apr. 2009.

J. Cheney, A. Ahmed, and U. A. Acar. Database queries
that explain their work. In PPDP 2014, pages 271–282.
ACM, 2014a.

J. Cheney, S. Lindley, G. Radanne, and P. Wadler. Effective
quotation: Relating approaches to language-integrated
query. In PEPM 2014, pages 15–26. ACM, 2014b.

J. Cheney, S. Lindley, and P. Wadler. Query shredding: Effi-
cient relational evaluation of queries over nested multisets.
In SIGMOD 2014, pages 1027–1038. ACM, 2014c.

A. Chlipala. Ur/Web: A simple model for programming the
web. In POPL 2015, pages 153–165. ACM, 2015.

E. Cooper. The script-writer’s dream: How to write great
SQL in your own language, and be sure it will succeed. In
DBPL 2009, volume 5708 of LNCS, pages 36–51. Springer
Berlin Heidelberg, 2009.

E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links:
Web programming without tiers. In FMCO 2006, pages
266–296. Springer-Verlag, 2007.

Y. Cui, J. Widom, and J. L. Wiener. Tracing the lineage
of view data in a warehousing environment. ACM Trans.
Database Syst., 25(2):179–227, June 2000.

S. Fehrenbach and J. Cheney. Language-integrated prove-
nance in Links. In TaPP Workshop, July 2015.

J. N. Foster, T. J. Green, and V. Tannen. Annotated XML:
queries and provenance. In PODS, pages 271–280, 2008.

G. Giorgidze, T. Grust, T. Schreiber, and J. Weijers. Haskell
boards the ferry: Database-supported program execution
for Haskell. In IFL 2010, pages 1–18. Springer-Verlag,
2011.

G. Giorgidze, T. Grust, A. Ulrich, and J. Weijers. Algebraic
data types for language-integrated queries. In DDFP 2013,
pages 5–10. ACM, 2013.

B. Glavic and G. Alonso. Provenance for nested subqueries.
In EDBT 2009, pages 982–993, 2009a.

B. Glavic and G. Alonso. Perm: Processing provenance and
data on the same data model through query rewriting. In
ICDE 2009, pages 174–185, 2009b.

B. Glavic, R. Miller, and G. Alonso. Using SQL for efficient
generation and querying of provenance information. In
Festschrift in Honour of Peter Buneman, volume 8000 of
LNCS, pages 291–320. Springer Berlin Heidelberg, 2013.

T. J. Green, G. Karvounarakis, and V. Tannen. Provenance
semirings. In PODS 2007, pages 31–40. ACM, 2007.

T. Grust and A. Ulrich. First-class functions for first-order
database engines. In DBPL 2013, 2013.

T. Grust, J. Rittinger, and T. Schreiber. Avalanche-safe
LINQ compilation. PVLDB, 3(1):162–172, 2010.

G. Karvounarakis, Z. G. Ives, and V. Tannen. Querying data
provenance. In SIGMOD 2010, pages 951–962, 2010.

S. Lindley and J. Cheney. Row-based effect types for database
integration. In TLDI 2012, pages 91–102. ACM, 2012.

E. Meijer, B. Beckman, and G. Bierman. LINQ: Reconciling
object, relations and XML in the .NET framework. In
SIGMOD 2006, pages 706–706. ACM, 2006.

A. Ohori and K. Ueno. Making Standard ML a practical
database programming language. In ICFP 2011, pages
307–319. ACM, 2011.

M. Serrano. Hop, a fast server for the diffuse web. In
COORDINATION, 2009.

L. K. Shar and H. B. K. Tan. Defeating SQL injection. IEEE
Computer, 46(3):69–77, 2013.

D. Syme. Leveraging .NET meta-programming components
from F#: integrated queries and interoperable heteroge-
neous execution. In ML Workshop, 2006.

A. Ulrich and T. Grust. The flatter, the better: Query
compilation based on the flattening transformation. In
SIGMOD 2015, pages 1421–1426. ACM, 2015.

L. Wong. Normal forms and conservative extension properties
for query languages over collection types. J. Comput. Syst.
Sci., 52(3), 1996.

	Introduction
	Overview
	Links background
	Language-integrated query
	Higher-order functions and nested query results
	Where-provenance and lineage

	Provenance translations
	Where-Provenance
	Lineage

	Experimental Evaluation
	Where-provenance
	Lineage
	Threats to validity

	Related Work
	Conclusions

