
Language-integrated
Provenance

Stefan Fehrenbach

James Cheney

PPDP 2016

oid name based_in phone

1 EdinTours Edinburgh 8740 2489 123

2 Burns’s Glasgow 9307 2394 104

oid name destination type price in £

3 EdinTours Edinburgh bus 20

4 EdinTours Loch Ness bus 50

5 EdinTours Loch Ness boat 200

6 EdinTours Firth of Forth boat 50

7 Burns’s Islay boat 100

8 Burns’s Mallaig train 40

Agencies

ExternalTours

A database

2

oid name based_in phone

1 EdinTours Edinburgh 8740 2489 123

2 Burns’s Glasgow 9307 2394 104

oid name destination type price in £

3 EdinTours Edinburgh bus 20

4 EdinTours Loch Ness bus 50

5 EdinTours Loch Ness boat 200

6 EdinTours Firth of Forth boat 50

7 Burns’s Islay boat 100

8 Burns’s Mallaig train 40

Agencies

ExternalTours

query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name

&& e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

Language-integrated query

3

oid name based_in phone

1 EdinTours Edinburgh 8740 2489 123

2 Burns’s Glasgow 9307 2394 104

oid name destination type price in £

3 EdinTours Edinburgh bus 20

4 EdinTours Loch Ness bus 50

5 EdinTours Loch Ness boat 200

6 EdinTours Firth of Forth boat 50

7 Burns’s Islay boat 100

8 Burns’s Mallaig train 40

Agencies

ExternalTours

query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name

&& e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

name phone

EdinTours 8740 2489 123

EdinTours 8740 2489 123

Burns’s 9307 2394 104

Language-integrated query

4

oid name based_in phone

1 EdinTours Edinburgh 8740 2489 123

2 Burns’s Glasgow 9307 2394 104

oid name destination type price in £

3 EdinTours Edinburgh bus 20

4 EdinTours Loch Ness bus 50

5 EdinTours Loch Ness boat 200

6 EdinTours Firth of Forth boat 50

7 Burns’s Islay boat 100

8 Burns’s Mallaig train 40

Agencies

ExternalTours

query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name

&& e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

name phone

EdinTours 8740 2489 123

EdinTours 8740 2489 123

Burns’s 9307 2394 104

Where-provenance

5

oid name based_in phone

1 EdinTours Edinburgh 8740 2489 123

2 Burns’s Glasgow 9307 2394 104

oid name destination type price in £

3 EdinTours Edinburgh bus 20

4 EdinTours Loch Ness bus 50

5 EdinTours Loch Ness boat 200

6 EdinTours Firth of Forth boat 50

7 Burns’s Islay boat 100

8 Burns’s Mallaig train 40

Agencies

ExternalTours

query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name

&& e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

name phone

EdinTours 8740 2489 123

EdinTours 8740 2489 123

Burns’s 9307 2394 104

Where-provenance

6

oid name based_in phone

1 EdinTours Edinburgh 8740 2489 123

2 Burns’s Glasgow 9307 2394 104

oid name destination type price in £

3 EdinTours Edinburgh bus 20

4 EdinTours Loch Ness bus 50

5 EdinTours Loch Ness boat 200

6 EdinTours Firth of Forth boat 50

7 Burns’s Islay boat 100

8 Burns’s Mallaig train 40

Agencies

ExternalTours

query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name

&& e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

name phone

EdinTours 8740 2489 123

EdinTours 8740 2489 123

Burns’s 9307 2394 104

Where-provenance

7

oid name based_in phone

1 EdinTours Edinburgh 8740 2489 123

2 Burns’s Glasgow 9307 2394 104

oid name destination type price in £

3 EdinTours Edinburgh bus 20

4 EdinTours Loch Ness bus 50

5 EdinTours Loch Ness boat 200

6 EdinTours Firth of Forth boat 50

7 Burns’s Islay boat 100

8 Burns’s Mallaig train 40

Agencies

ExternalTours

query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name

&& e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

name phone

EdinTours 8740 2489 123

EdinTours 8740 2489 123

Burns’s 9307 2394 104

Where-provenance

8

oid name based_in phone

1 EdinTours Edinburgh 8740 2489 123

2 Burns’s Glasgow 9307 2394 104

oid name destination type price in £

3 EdinTours Edinburgh bus 20

4 EdinTours Loch Ness bus 50

5 EdinTours Loch Ness boat 200

6 EdinTours Firth of Forth boat 50

7 Burns’s Islay boat 100

8 Burns’s Mallaig train 40

Agencies

ExternalTours

query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name

&& e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

name phone

EdinTours 8740 2489 123

EdinTours 8740 2489 123

Burns’s 9307 2394 104

Lineage (why-provenance)

9

oid name based_in phone

1 EdinTours Edinburgh 8740 2489 123

2 Burns’s Glasgow 9307 2394 104

oid name destination type price in £

3 EdinTours Edinburgh bus 20

4 EdinTours Loch Ness bus 50

5 EdinTours Loch Ness boat 200

6 EdinTours Firth of Forth boat 50

7 Burns’s Islay boat 100

8 Burns’s Mallaig train 40

Agencies

ExternalTours

query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name

&& e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

name phone

EdinTours 8740 2489 123

EdinTours 8740 2489 123

Burns’s 9307 2394 104

Lineage (why-provenance)

10

Language-integrated provenance builds on

Language-integrated query

• LINQ: … Meijer, Beckman, Bierman.
SIGMOD 2006

• The script-writer’s dream. Cooper.
DBPL 2009

• Query shredding: … Cheney,
Lindley, Wadler. SIGMOD 2014

• Effective quotation: … Cheney,
Lindley, Radanne, Wadler.
PEPM 2014

Provenance in databases

• Why and where: … Buneman,
Khanna, Tan. ICDT 2001

• On the expressiveness of implicit
provenance … Buneman, Cheney,
Vansummeren. TODS 2008

• Perm: … Glavic, Alonso. ICDE 2009

• Using SQL for efficient generation
and querying … Glavic, Miller,
Alonso. Buneman Festschrift 2013

11

This talk

1. Why?

2. Language-integrated where-provenance in Links

3. Rewriting Links to Links

4. User-defined where-provenance

5. Lineage in Links and its translation to Links

6. Performance

W

W

The paper

L

12

Why?

Easy access to data and its provenance

Provenance is not data – it is metadata
data without provenance is less than complete
provenance on its own is quite useless
data with fake provenance is an affront

Calculating provenance and propagating it manually is hard
or least cumbersome enough to want to automate it

13

Where-provenance in Links

Mark data carrying provenance metadata with an abstract type:

Prov(O) O is a base type

Two operations:

No constructor! – only the runtime can create provenance-annotated data

Print as a comment, because it cannot appear in a program anyway:

“EdinTours” #(“Agencies”, “name”, 2)

Γ ⊢ data M : O

Γ ⊢ M : Prov(O)

Γ ⊢ prov M : (String, String, Int)

Γ ⊢ M : Prov(O)

W

14

query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name

&& e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

Language-integrated query in Links

15

table “Agencies”
with (oid: Int,
with (name: String,
with (based_in: String,
with (phone: String)
where phone prov default,
where name prov default

query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name

&& e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

var agencies =

Language-integrated query in Links

16

table “Agencies”
with (oid: Int,
with (name: String,
with (based_in: String,
with (phone: String)
where phone prov default,
where name prov default

query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name

&& e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

var agencies =

agencies : [(oid: Int,
agencies : [(name: String,
agencies : [(based_in: String,
agencies : [(phone: String)]

Language-integrated query in Links

17

table “Agencies”
with (oid: Int,
with (name: String,
with (based_in: String,
with (phone: String)
where phone prov default,
where name prov default

query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name

&& e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

var agencies =

agencies : [(oid: Int,
agencies : [(name: String,
agencies : [(based_in: String,
agencies : [(phone: String)]

[(name = “EdinTours”, #(“ExternalTours”, “name”, 5)
[(phone = “8740 2489 123”), #(“Agencies”, “phone”, 1)
[(name = “EdinTours”, #(“ExternalTours”, “name”, 6)
[(phone = “8740 2489 123”), #(“Agencies”, “phone”, 1)
[(name = “Burns’s”, #(“ExternalTours”, “name”, 7)
[(phone = “9307 2394 104”)] #(“Agencies”, “phone”, 2)

: [(name: String, phone: String)]

Language-integrated query in Links

18

table “Agencies”
with (oid: Int,
with (name: String,
with (based_in: String,
with (phone: String)
where phone prov default,
where name prov default

query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name

&& e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

var agencies =

agencies : [(oid: Int,
agencies : [(name: String,
agencies : [(based_in: String,
agencies : [(phone: String)]

[(name = “EdinTours”, #(“ExternalTours”, “name”, 5)
[(phone = “8740 2489 123”), #(“Agencies”, “phone”, 1)
[(name = “EdinTours”, #(“ExternalTours”, “name”, 6)
[(phone = “8740 2489 123”), #(“Agencies”, “phone”, 1)
[(name = “Burns’s”, #(“ExternalTours”, “name”, 7)
[(phone = “9307 2394 104”)] #(“Agencies”, “phone”, 2)

: [(name: Prov(String), phone: Prov(String))]

Where-provenance in LinksW

19

table “Agencies”
with (oid: Int,
with (name: String,
with (based_in: String,
with (phone: String)
where phone prov default,
where name prov default

query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name

&& e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

var agencies =

agencies : [(oid: Int,
agencies : [(name: String,
agencies : [(based_in: String,
agencies : [(phone: String)]

[(name = “EdinTours”, #(“ExternalTours”, “name”, 5)
[(phone = “8740 2489 123”), #(“Agencies”, “phone”, 1)
[(name = “EdinTours”, #(“ExternalTours”, “name”, 6)
[(phone = “8740 2489 123”), #(“Agencies”, “phone”, 1)
[(name = “Burns’s”, #(“ExternalTours”, “name”, 7)
[(phone = “9307 2394 104”)] #(“Agencies”, “phone”, 2)

: [(name: Prov(String), phone: Prov(String))]

Where-provenance in LinksW

20

table “Agencies”
with (oid: Int,
with (name: String,
with (based_in: String,
with (phone: String)
where phone prov default,
where name prov default

query {
for (a <-- agencies)
for (e <-- externalTours)
where (a.name == e.name

&& e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

var agencies =

agencies : [(oid: Int,
agencies : [(name: Prov(String),
agencies : [(based_in: String,
agencies : [(phone: Prov(String))]

[(name = “EdinTours”, #(“ExternalTours”, “name”, 5)
[(phone = “8740 2489 123”), #(“Agencies”, “phone”, 1)
[(name = “EdinTours”, #(“ExternalTours”, “name”, 6)
[(phone = “8740 2489 123”), #(“Agencies”, “phone”, 1)
[(name = “Burns’s”, #(“ExternalTours”, “name”, 7)
[(phone = “9307 2394 104”)] #(“Agencies”, “phone”, 2)

: [(name: Prov(String), phone: Prov(String))]

Where-provenance in LinksW

21

table “Agencies”
with (oid: Int,
with (name: String,
with (based_in: String,
with (phone: String)
where phone prov default,
where name prov default

query {
for (a <-- agencies)
for (e <-- externalTours)
where (data a.name == e.name

&& e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

var agencies =

agencies : [(oid: Int,
agencies : [(name: Prov(String),
agencies : [(based_in: String,
agencies : [(phone: Prov(String))]

[(name = “EdinTours”, #(“ExternalTours”, “name”, 5)
[(phone = “8740 2489 123”), #(“Agencies”, “phone”, 1)
[(name = “EdinTours”, #(“ExternalTours”, “name”, 6)
[(phone = “8740 2489 123”), #(“Agencies”, “phone”, 1)
[(name = “Burns’s”, #(“ExternalTours”, “name”, 7)
[(phone = “9307 2394 104”)] #(“Agencies”, “phone”, 2)

: [(name: Prov(String), phone: Prov(String))]

Where-provenance in LinksW

22

table “Agencies”
with (oid: Int,
with (name: String,
with (based_in: String,
with (phone: String)
where phone prov default,
where name prov default

query {
for (a <-- agencies)
for (e <-- externalTours)
where (data a.name == data e.name

&& data e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

var agencies =

agencies : [(oid: Int,
agencies : [(name: Prov(String),
agencies : [(based_in: String,
agencies : [(phone: Prov(String))]

[(name = “EdinTours”, #(“ExternalTours”, “name”, 5)
[(phone = “8740 2489 123”), #(“Agencies”, “phone”, 1)
[(name = “EdinTours”, #(“ExternalTours”, “name”, 6)
[(phone = “8740 2489 123”), #(“Agencies”, “phone”, 1)
[(name = “Burns’s”, #(“ExternalTours”, “name”, 7)
[(phone = “9307 2394 104”)] #(“Agencies”, “phone”, 2)

: [(name: Prov(String), phone: Prov(String))]

Where-provenance in LinksW

23

This talk

1. Why?

2. Language-integrated where-provenance in Links

3. Rewriting Links to Links

4. User-defined where-provenance

5. Lineage in Links and its translation to Links

6. Performance

W

W

The paper

L

24

Links

Prov(O)

data M prov M

table N with (a: A, …)
where a prov default, …

for (x <-- T) M

update (x <-- T) M

(data: O, prov: (String, String, Int))

M.data M.prov

Pair of table and view with initial
provenance annotations

for (x <-- T.2()) M

update (x <-- T.1) M

LinksW

25

table “Agencies”
with (oid: Int,
with (name: String,
with (based_in: String,
with (phone: String)
where phone prov default,
where name prov default

26

(table “Agencies”
(with (oid: Int,
(with (name: String,
(with (based_in: String,
(with (phone: String),
fun () {

for (a <-- table “Agencies” with …)
fo[(oid = a.oid,
fo[(name = (data = a.name,
fo[(name = (prov = (“Agencies”, “name”, a.oid)),
fo[(based_in = a.based_in,
fo[(phone = (data = a.phone,
fo[(phone = (prov = (“Agencies”, “phone”, a.oid)))]

})

table “Agencies”
with (oid: Int,
with (name: String,
with (based_in: String,
with (phone: String)
where phone prov default,
where name prov default

27

(table “Agencies”
(with (oid: Int,
(with (name: String,
(with (based_in: String,
(with (phone: String),
fun () {

for (a <-- table “Agencies” with …)
fo[(oid = a.oid,
fo[(name = (data = a.name,
fo[(name = (prov = (“Agencies”, “name”, a.oid)),
fo[(based_in = a.based_in,
fo[(phone = (data = a.phone,
fo[(phone = (prov = (“Agencies”, “phone”, a.oid)))]

})

table “Agencies”
with (oid: Int,
with (name: String,
with (based_in: String,
with (phone: String)
where phone prov default,
where name prov default

28

(table “Agencies”
(with (oid: Int,
(with (name: String,
(with (based_in: String,
(with (phone: String),
fun () {

for (a <-- table “Agencies” with …)
fo[(oid = a.oid,
fo[(name = (data = a.name,
fo[(name = (prov = (“Agencies”, “name”, a.oid)),
fo[(based_in = a.based_in,
fo[(phone = (data = a.phone,
fo[(phone = (prov = (“Agencies”, “phone”, a.oid)))]

})

table “Agencies”
with (oid: Int,
with (name: String,
with (based_in: String,
with (phone: String)
where phone prov default,
where name prov default

29

query {
for (a <-- agencies)
for (e <-- externalTours)
where (data a.name == data e.name

&& data e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

30

query {
for (a <-- agencies)
for (e <-- externalTours)
where (data a.name == data e.name

&& data e.type == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

query {
for (a <- agencies.2())
for (e <- externalTours.2())
where (a.name.data == e.name.data

&& e.type.data == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

31

Links

Prov(O)

data M prov M

table N with (a: A, …)
where a prov default, …

for (x <-- T) M

update (x <-- T) M

(data: O, prov: (String, String, Int))

M.data M.prov

Pair of table and view with initial
provenance annotations

for (x <-- T.2()) M

update (x <-- T.1) M

LinksW

32

This talk

1. Why?

2. Language-integrated where-provenance in Links

3. Rewriting Links to Links

4. User-defined where-provenance

5. Lineage in Links and its translation to Links

6. Performance

W

W

The paper

L

33

User-defined where-provenance

34

table “Agencies”
with (oid: Int,
with (name: String,
with (based_in: String,
with (phone: String)
where phone prov default,
where name prov anyDBFun

sig anyDBFun: (_) -> (String, String, Int)
fun anyDBFun (r) {

(“Answers”, “Life, Universe and everything…”, 42)
}

sig defaultAgenciesPhone: (_) -> (String, String, Int)
fun defaultAgenciesPhone (r) {

(“Agencies”, “phone”, r.oid)
}fun () {

for (a <-- table “Agencies” with …)
fo[(oid = a.oid,
fo[(name = (data = a.name,
fo[(name = (prov = anyDBFun(a)),
fo[(based_in = a.based_in,
fo[(phone = (data = a.phone,
fo[(phone = (prov = defaultAgenciesPhone(a)))]

}

Lineage in Links

• No special type, lineage keyword triggers query rewriting

• Query result changes from [A] to [(data: A, prov: [(String, Int)])]

• Initial annotations on table with a view

• Add input’s annotations to the body’s annotations

• Need every function twice, for use within and outwith lineage blocks

35

L

〚for (x <-- N) M〛 = for (y <--〚N’〛)
for (z <--〚M’〛[y.data/x])

[(data = z.data, prov = y.prov ++ z.prov)]

Performance

• Slowdown for where-provenance: 1.2-2.8x

• Slowdown for lineage: 1.3-7.6x

• Comparable to calculating provenance on the database

36

Conclusions

Building on language-integrated query technology we can build
provenance tracking into the programming language

Type-safe handling of provenance-annotated data

No need for database plugins – works with any plain SQL database

Next steps: richer queries, other forms of provenance, provenance for
programming language values, other host languages, …

37

query {
for (a <- fun() { for (a <-- table “Agencies” …)
for (a <- fun() { [(oid = a.oid,
for (a <- fun() { [(name = (data = a.name,
for (a <- fun() { [(name = (prov = (“Agencies”, “name”, a.oid)),
for (a <- fun() { [(based_in = a.based_in,
for (a <- fun() { [(phone = (data = a.phone,
for (a <- fun() { [(phone = (prov = (“Agencies”, “phone”, a.oid)))]}())
for (e <- fun() { for (e <-- table “ExternalTours” …) … }())
where (a.name.data == e.name.data

&& e.type.data == “boat”)
[(name = e.name,
[(phone = a.phone)]

}

38

SELECT e.name AS name_data,
SELECT ‘ExternalTours’ AS name_prov_1,
SELECT ‘name’ AS name_prov_2,
SELECT e.oid AS name_prov_3,
SELECT a.phone AS phone_data,
SELECT ‘Agencies’ AS phone_prov_1,
SELECT ‘phone’ AS phone_prov_2,
SELECT a.oid AS phone_prov_3
FROM Agencies AS a,
FROM ExternalTours AS e
WHERE a.name = e.name

AND e.type = ‘boat’

39

