
Just-in-time Compilation
for Generalized Parsing

Stefan Fehrenbach

Fachbereich Mathematik und Informatik
Philipps-Universität Marburg

A thesis submitted for the degree of
Master of Science

Supervisors:
Tillmann Rendel

Paolo G. Giarrusso
Prof. Dr. Klaus Ostermann

1 September 2014

Abstract

Parsing syntactically extensible languages requires generalized
parsers which are slow to generate for repeatedly changing grammars.
This situation is similar to the execution of dynamic languages like
JavaScript, suggesting that we can appropriate technology from that
field to use in just-in-time compiled parsers. We implement two just-in-
time compiling grammar interpreters, a simple one and a generalized
LL parser, using a research prototype of a programming language
implementation framework called Truffle. Exploratory performance
experiments suggests that appropriating just-in-time compilation tech-
nology for parsers is not only possible, but close to being competitive
for generalized parsing and might even surpass handwritten recogniz-
ers in some cases.

Contents

1 Introduction 1

2 Background: Recursive Descent Recognizers 5

3 Background: Interpreting Grammars 7

4 Just-in-time Compilation of a Grammar Interpreter with Truffle 11

5 Generalized LL Parsing with Truffle 17

6 Study 1: Recursive Descent Recognizers 19
6.1 Goals . 20
6.2 Setup . 21
6.3 Data . 23
6.4 Interpretation . 26
6.5 Threats to Validity . 27

7 Study 2: Generalized LL Parsing 28
7.1 Goals . 28
7.2 Setup . 29
7.3 Data . 31
7.4 Interpretation . 33
7.5 Threats to Validity . 33

8 Discussion 34

9 Related Work 36

10 Conclusions 37

package demo;

import SQL;
import XML;

class Demo {
public String getItemXML(int itemID) {

Query q = em.SELECT name, desc
FROM Item i
WHERE i.id == ${itemID};

return <item>
<id>${itemID}</id>
<name>${q.getResult().get(”name”)}</name>
<description>${q.getResult().get(”desc”)}</description>

</item>;
}

}

Figure 1: Database query and XML serialization with SugarJ.

1 Introduction

Syntactically extensible programming languages prove useful for imple-
menting domain-specific languages. Where pure embedding and similar
techniques allow for expressing domain-specific semantics in a host lan-
guage, the flexibility to almost arbitrarily extend the language syntax allows
programmers to use even domain-specific notation. One example of such a
language is SugarJ [4]. It is based on Java, but it can be extended through
sugar libraries, which extend the base language with new syntax, semantics,
static analysis, and IDE support [3]. See Figure 1 for an example program
in SugarJ. The getItemXML method fetches an item from a database and se-
rializes said item to an XML string. The program imports and uses two
domain-specific languages: one for database queries and another for literal
XML syntax.

From personal experience [5] we can confirm that working with SugarJ is
quite pleasant, except for one thing: waiting for parser generation. Parsing
SugarJ files is a challenge because the language may change while a file
is being parsed. Consider the program in Figure 1 again. The first line is
plain Java and declares the file to belong to the package demo. The first
import statement reads import SQL;. In Java this would just bring a number
of classes into scope. In SugarJ this import statement changes the language.
After the import, we can suddenly write database queries as SQL code in
the middle of the Java code. The next import extends the language further
with XML literals. The syntax of language extensions may even interact

1

Figure 2: SugarJ processing loop. Illustration by Sebastian Erdweg [4].

with existing Java syntax and that of other extensions, as we see in the XML
part, where we have some inline Java code again.

Currently, SugarJ implements parsing the changing language as illus-
trated in Figure 2. We start parsing with the SugarJ base grammar, which
is the Java grammar plus the languages that are used to implement lan-
guage extensions, namely SDF for describing grammars and Stratego for
implementing the semantics. Using the base grammar, we parse one top-
level declaration at a time. In our example from Figure 1 that would be the
package declaration. A package declaration does not change the language,
so we continue to parse the rest of the file, starting with the next top-level
declaration. In our example, the next top-level declaration imports the SQL
language extension. Thus we need to adapt the current grammar, which
is the SugarJ base grammar, to include the productions that allow the pro-
grammer to use SQL in the rest of the file. SugarJ uses SDF to describe the
(mostly) context-free languages and language extensions. Thus it is possible
to just combine the current grammar with the extension grammar to get a
grammar to be used for the rest of the file. Now SugarJ generates a parser
for the new grammar by invoking the Scannerless GLR parser generator that
is part of the SDF reference implementation. This takes a while. We continue
parsing the next top-level declaration, which again imports a language, so
we have to change the grammar again and generate a new parsers for the
combined language.

SugarJ caches parsers, so if we use the same combination of languages
again, it will not regenerate the same parsers over and over again. When
developing language extensions though, programmers frequently change
the grammar of their language. To see the effect of grammar changes, a
programmer most likely has one or more files opened in the SugarJ IDE that
exercise the language extension. Depending on the order of inputs, SugarJ

2

will need to generate many parsers to parse, compile, and display the test
files, which will take minutes. We think we can do better.

Let’s consider the setting again. We have a grammar with which to parse
a file and expect the process to be responsive, not take minutes for parser
generation. A web browser faces a similar scenario when presented with a
website that includes JavaScript code. To display the website, it must execute
the JavaScript code and because users do not like to wait for programs, the
response time has to be as low as possible. Nowadays however, JavaScript
is also used for more extensive computation, so peak performance is a
concern. The solution is just-in-time compilation. Browser start executing
JavaScript code as quickly as possible by interpreting code with minimal or
no optimizations at first. While the code runs in the interpreter, the browser
collects information about the executed code, for example which branches
are taken and how often. This information is used to optimize and compile
frequently executed code to fast machine code in the background. Similar
considerations apply to parsing. Thus, the question that inspired this thesis:
what would happen if we use just-in-time compilation for generalized parsing?

• SDF generates a parse table, which is an optimization that trades
ahead-of-time compilation costs for the faster parse times of a table-
based parser. Could we instead just start parsing with the grammar as
it is?

• Many files will not exercise the entire grammar. For example, only
files that define language extensions require the entirety of the SDF
and Stratego grammars. Similarly, sugar libraries frequently contain
little to no Java code. Could we avoid costly optimizations for parts of
the grammar that are not used (often)?

• Importing an additional language extensions generally only changes a
small amount of nonterminals in the existing grammars. The existing
language stays mostly the same; the additional language is mostly
self-contained; there are only a small set of interaction points between
languages. Can we incrementally change the parser, retaining the
parts that are not affected by the changes?

• Many of smart people work on just-in-time compilers for program-
ming languages. Can we apply their work to parsing?

Truffle [14, 15] is a recent research project that tries to make it easy to
write high-performance virtual machines for programming languages. Write
an AST interpreter in a certain style and Truffle will use partial evaluation to
specialize the interpreter to the program, making it a just-in-time compiler.
A parser is the first Futamura projection of a grammar interpreter [6, 9].
Thus it looks like all we need to do is write an interpreter for context-free
grammars.

3

SugarJ allows combination of arbitrary context-free languages. Therefore
we need a parsing algorithm that supports any context-free language, like
Earley, generalized LL, or generalized LR. We chose to use a generalized
LL parser (GLL), because we had access to an implementation in Java and
Truffle needs an AST interpreter written in Java. Truffle also enforces a
particular style and requires users to be very explicit about static data,
which in our case is the grammar, and control flow which turns out to be
very difficult for GLL.

In summary, this thesis makes the following contributions:

• Section 2 gives a short introduction to parsing by discussing how to
systematically generate recursive descent recognizers from a grammar.
This is mostly background information for readers who are unfamiliar
with writing a simple parser by hand. We later refer to these hand-
written recognizers in a performance comparison with Truffle-enabled
grammar interpreters.

• In Section 3 we discuss how a grammar interpreter can perform the
same job. The implementation itself is straightforward and only be-
comes a major contribution in Section 4. There we discuss how we
modified the grammar interpreter so that it works with Truffle. We
thereby demonstrate that Truffle can be used to perform just-in-time
compilation of something that is not, not obviously at least, a program-
ming language.

• In the same section, we also describe the first optimization we imple-
mented. Since nonterminals rarely change, we perform inline caching,
complete with guards and deoptimization in case they do change.

• In an exploratory performance study (Section 6), we compare the
Truffle-based interpreters with and without optimization with hand-
written recognizers. The optimized Truffle-based interpreters out-
perform the handwritten ones, which suggests that this line of work
deserves further attention.

• We convert the code of an existing GLL parser to use Truffle. This
is similar to what we did for the simple recursive descent grammar
interpreter but due to the nature of the GLL algorithm, this proves
more a lot more challenging. We discuss the implementation and its
problems in Section 5.

• In a second exploratory study (Section 7), we compare the original
GLL parser to the Truffle-enabled one. The Truffle-enabled parser is
only about 20% slower. This is not unreasonable and suggests that
addressing the problems with the implementation and further research
into incremental grammar analysis might be worthwhile.

4

〈S〉 ::= 〈SExp〉 EOF

〈SExp〉 ::= 〈Atom〉 | 〈Pair〉

〈Atom〉 ::= 〈Symbol〉 | 〈Number〉

〈Pair〉 ::= ‘(’ 〈SExp〉 ‘.’ 〈SExp〉 ‘)’

〈Symbol〉 ::= [a-zA-Z]+

〈Number〉 ::= [0-9]+

Figure 3: Grammar of a simple s-expression language.

2 Background: Recursive Descent Recognizers

In this section, we will see how to systematically turn a grammar into a
program that determines whether its input is in the language the grammar
describes or not. We say such a program solves the word problem and
we call it a recognizer. We use the simplest algorithm possible, a recursive
descent recognizer without lookahead. This imposes several restrictions
on the grammars and therefore the class of languages we can recognize
with such a parser is quite limited. There can be no left recursion, or the
recognizer would run into an infinite loop. No lookahead means as soon
as we parse a character we are committed. There is no backtracking after
parsing a character. We can only backtrack when the current character is not
what we expected. There are not many more practical languages with such
a grammar but for illustration purposes the simplicity is ideal.

S-expressions are simple enough to keep to the restrictions of our simple
recursive descent algorithm and will serve as an example, see the grammar
in Figure 3. The start symbol is called 〈S〉, and its right-hand side says that
we expect exactly one s-expression as parsed by 〈SExp〉 and then the end of
the string, as indicated by the special nonterminal symbol EOF. An 〈SExp〉
is either an 〈Atom〉 or a 〈Pair〉. A pair is in dotted pair notation, where both
constituents are s-expressions themselves, they are separated by a dot and
surrounded by parentheses. Atoms are either numbers or symbols. We use
regular expression-like syntax for brevity, but we could express the character
classes numerals and alphabetic characters using only single literals and
additional nonterminals.

We have an informal idea of what the semantics should be. Let’s refine
that by translating the s-expression grammar into Java code (Figure 4). Most
of everything in Java starts with a class, we define one called RecursiveDescent.

5

class RecursiveDescent {
char[] string;
int pos;

RecursiveDescent(String string) {
this.string = string.toCharArray();
this.pos = 0;

}

boolean s() { return sexp() && eof(); }

boolean sexp() { return atom() || pair(); }

boolean atom() { return symbol() || number(); }

boolean pair() {
return character(’(’) && sexp() && character(’.’) && sexp() && character(’)’); }

boolean symbol() { return regex(”[a-zA-Z]+”); }

boolean number() { return regex(”[0-9]+”); }

boolean character(char c) {
if (string[pos] == c) {

pos++;
return true;

}
return false;

}

boolean eof() { return pos == string.length; }

// Call with e.g. ”(x.(y.(z.NIL)))”
public static void main(String[] args) {

System.out.println(new RecursiveDescent(args[0]).s());
}

}

Figure 4: Recognizer for the simple s-expression language.

6

There are two pieces of state that we need to keep track of: the string we are
parsing and the position we are at currently. We represent them as fields
and initialize them in a constructor.

Parsing starts with the start symbol 〈S〉. There are two possible results,
the string is in the language, or not. Thus we create methods for nonter-
minals with the return type boolean. The first one is the method boolean s().
In the grammar, we see that 〈S〉 has only one alternative: parse the string
according to 〈SExp〉 and then be at the end (EOF). Thus, the body of s() re-
turns the result of parsing with 〈SExp〉, that is, it calls the method sexp(), and
also makes sure that we reached the end of the string by calling eof() and
combining the results with logical AND. The method sexp() is the translation
of the nonterminal 〈SExp〉. If we look again at the grammar, we see that
〈SExp〉 is an alternative. An 〈SExp〉 is either an atom as parsed by 〈Atom〉
or a pair as parsed by 〈Pair〉. Translated to Java this means we try parsing
according to 〈Atom〉 by calling atom(), if and only if that fails, we also try to
parse according to 〈Pair〉 by calling pair(). If either of the two succeeds we
return true, and false otherwise. We translate the remaining nonterminals
analogously.

In the translation of 〈Pair〉we call the method character to parse a single
character. Its implementation is straightforward. If the character at the cur-
rent position is the one we expect here, we advance the current position and
signal success by returning true. Otherwise, we do not advance the current
position and return false. This is where the somewhat limited backtracking
with no lookahead comes from.

The method eof() is the translation of the somewhat special terminal
symbol EOF. It signals that we expect to have reached the end of the string.
This is the case iff the current position is the same as the string’s length. We
omit the implementation of the regex method. As mentioned before, this is
merely syntactic sugar for repeatedly parsing one of a long list of alternative
characters. We can, of course, run the parser by initializing the state and
calling the method that matches the start symbol.

3 Background: Interpreting Grammars

In the previous section, we saw how to systematically construct a recognizer
for a given language by translating a grammar into Java code. One could
of course write a program that performs the translation. Such a program
would be called a parser generator. If we consider the grammar to be a
programming language, a parser generator is a compiler. It turns the input
language program into a program in the output language, in our case Java.
A popular alternative to writing compilers is writing interpreters. In this
section we will describe how to write an interpreter that takes a grammar
and a string as inputs and tells us whether the string is in the language

7

〈S〉 ::=

Alternatives

Sequence

〈S〉 EOF

〈SExp〉 ::=

Alternatives

Sequence

〈Atom〉

Sequence

〈Pair〉

〈Atom〉 ::=

Alternatives

Sequence

〈Symbol〉

Sequence

〈Number〉

〈Pair〉 ::=

Alternatives

Sequence

‘(’ 〈SExp〉 ‘.’ 〈SExp〉 ‘)’

〈Symbol〉 ::=

Alternatives

Sequence

[0-9]+

〈Number〉 ::=

Alternatives

Sequence

[a-zA-Z]+

Figure 5: Grammar AST forest for the simple s-expression language.

defined by the grammar. It performs the same job as the recognizer from
the last section but, additionally, is flexible in the grammar it considers.

The simplest interpreters are structurally recursive. We want to con-
struct a simple interpreter, so lets consider the structure of our language of
grammars. There is the rule definition operator ::=. This suggests we need
an environment in which to look up names that are defined by nonterminals
that appear on the left hand side of a definition, when we need what they
stand for when they appear on the right hand side. The right hand side
of a rule is a list of alternatives. Every alternative consists of a sequence
of leave nodes in our abstract syntax tree of grammars. The leaf nodes
are parsing a single literal symbol and parsing according to a nonterminal
symbol. There are two special kinds of nodes, one that recognizes the end of
the string and one that deals with our regular expression-like shorthand for
parsing multiple characters of a particular class. See the forest of abstract
syntax trees in Figure 5, that corresponds to the s-expression grammar from
Figure 3.

The common super class of our grammar interpreter’s AST nodes will
be GrammarNode, see Figure 6. Every AST node will have access to some
shared state encapsulated by the ParserState. The shared state will be the
string that is to be parsed, the current position inside the string, and the
environment that maps nonterminals to their right hand sides. We also
declare the method boolean executeParse(). In usual programming language
interpreters we would probably call it eval.

8

abstract class GrammarNode {
final ParserState state;
GrammarNode(ParserState state) { this.state = state; }
abstract boolean executeParse();

}

Figure 6: Common super class of our grammar interpreter AST nodes.

We implement the four grammar node classes as detailed in Figure 7. The
right hand side of a definition is a list of alternatives. The Alternatives node
is the corresponding node in our grammar AST. The alternatives inside an
Alternatives node are an array of Sequence nodes. We omit the constructor that
initializes this array. To parse a list of alternatives we try to parse according
to the first child node, by calling its executeParse() method. If that succeeds,
we return true. Otherwise, we try the next until there are none left, in which
case we signal failure by returning false. Similarly, we parse a Sequence node
by recursively calling executeParse() on its children. The difference, is that all
of them must succeed for the sequence to succeed. In other words, we fold
logical OR and logical AND, respectively, over an array of child nodes.

The leaf nodes not any more complicated. To parse a terminal symbol,
we get the character at the current position in the input string out of the
parsing state. We succeed and advance one position in the input string if
it is the same as the code point c we expect and fail (and do not advance),
otherwise.

To parse a nonterminal, we look up its name in the environment that
is stored in the parsing state. The result of the lookup is the right hand
side of a definition, an Alternatives node. We just call its executeParse() method
and return the result. Notice that we perform repeated lookups every time
we attempt to parse a nonterminal. On the one hand, this allows us to
change the grammar easily. Consider the SugarJ use case. The programmer
imports an additional language extension. We build a grammar AST for
the added language and union the environments to get the environment for
the combined language. In case there are nonterminals that appear in both
environments, we would need to union the alternatives for the respective
nonterminals. Note that we only perform work for the new language and
the part of the current language that overlaps with it. On the other hand,
this probably incurs a performance penalty compared to fixing the right
hand side of a nonterminal in place. In the next section we will make the
assumption that grammars rarely change and optimize for that case by
inlining the right hand side of a nonterminal, thus avoiding the lookup,
having our cake, and eating it too.

9

class Alternatives extends GrammarNode {
private final Sequence[] alternatives;

boolean executeParse() {
for (Sequence alternative : alternatives)

if (alternative.executeParse())
return true;

else
continue;

return false;
}

}

class Sequence extends GrammarNode {
private final GrammarNode[] sequence;

boolean executeParse() {
for (GrammarNode grammarNode : sequence)

if (grammarNode.executeParse())
continue;

else
return false;

return true;
}

}

class TerminalSymbol extends GrammarNode {
private final int c;

boolean executeParse() {
int currentCodePoint = state.getCurrentChar();
if (currentCodePoint == c) {

state.incCurrentChar();
return true;

}
return false;

}
}

class NonterminalSymbol extends GrammarNode {
private final String nonterminalName;

boolean executeParse() {
Alternatives nonterminalRightHandSide = state.lookupInEnv(nonterminalName);
return nonterminalRightHandSide.executeParse();

}
}

Figure 7: Grammar interpreter nodes. (Constructors elided.)

10

abstract class GrammarNode extends Node {
final ParserState state;
GrammarNode(ParserState state) { this.state = state; }
abstract boolean executeParse(VirtualFrame frame);

}

Figure 8: Common superclass with Truffle. Compare to Figure 6.

4 Just-in-time Compilation of a Grammar Interpreter
with Truffle

Interpreters are slow. Truffle turns interpreters into fast [14] just-in-time
compilers. And the best part is, it only requires moderate effort on the side
of the language implementers. Truffle just-in-time compilers start as AST
interpreters, just like the one we saw in the previous section.

We start by making our AST base class extend the Node class provided by
Truffle. This base class for nodes provides a couple of helper functions that
are needed for node rewriting, which is core to performance optimizations
with Truffle. Figure 8 shows the new Truffle-enabled base class for our AST
nodes, Truffle-specific changes are highlighted. The second change is that
our executeParse method takes a parameter of type VirtualFrame. Frames are
Truffles representation stack frames. When calling functions using Truffle
you have to pass parameters using frames. Local variables can also be stored
there. Since our interpreter did not pass any parameters and there are no
locals, we will never need this argument. We still need to declare it because
Truffle uses it as a heuristic for which method calls to partially evaluate.

Three of the AST node classes from the old interpreter are easily con-
verted to use Truffle, see Figure 9. Of course, the executeParse method has
to accept its virtual frame parameter. When we recursively call executeParse,
we just pass the frame we got ourselves.

Truffle uses online partial evaluation, but we still need to annotate what
should be considered static data, not unlike the two-level languages com-
monly used for offline partial evaluation. Static data is in our case the
grammar, the program, as represented by the AST. The @Children annota-
tions are there to tell Truffle that those fields hold references to child nodes in
the AST. Truffle regards the AST as static, that is, it will never change, except
when using the AST rewriting methods from the base Node class. Internally,
Truffle uses this invariant to partially evaluate calls into the AST, like when
we call executeParse on one of the alternatives in Alternatives node. It will
aggressively inline and generate fast machine code instead of performing
actual Java method calls.

11

class Alternatives extends GrammarNode {
private final @Children Sequence[] alternatives;

@ExplodeLoop

boolean executeParse(VirtualFrame frame) {
for (Sequence alternative : alternatives)

if (alternative.executeParse(frame))
return true;

else
continue;

return false;
}

}

class Sequence extends GrammarNode {
private final @Children GrammarNode[] sequence;

@ExplodeLoop

boolean executeParse(VirtualFrame frame) {
for (GrammarNode grammarNode : sequence)

if (grammarNode.executeParse(frame))
continue;

else
return false;

return true;
}

}

class TerminalSymbol extends GrammarNode {
private final int c;

boolean executeParse(VirtualFrame frame) {
int currentCodePoint = state.getCurrentChar();
if (currentCodePoint == c) {

state.incCurrentChar();
return true;

}
return false;

}
}

Figure 9: Truffle-enabled nodes. Compare to Figure 7.

12

class UnoptimizedNonterminalCall extends GrammarNode {
private final String nonterminalName;

@Child IndirectCallNode indirectCall =

Truffle.getRuntime().createIndirectCallNode();

boolean executeParse(VirtualFrame frame) {
CallTarget nonterminalRightHandSide = state.lookupInEnv(nonterminalName);

return (Boolean) indirectCall.call(frame,

nonterminalRightHandSide , new Object[0]) ;
}

}

Figure 10: Simple nonterminal calls. Compare to Figure 9.

The @ExplodeLoop annotation tells Truffle that the loop is over static data
and should be unfolded during partial evaluation. It is our humble opinion
that Truffle should be able to figure that out by itself, since we already
annotated the fields that hold children, but it does not seem to do so.

Truffle ASTs must be trees. Being a directed, even acyclic, graph is
not good enough. Cycles are bad because they make Truffle silently stop
working. Nodes with more than one parent node are even worse. They
seem to work just fine but result in unspecified behavior. Grammars can
have cycles and nonterminals can occur at more than one position on a
right hand side. Consider our simple s-expression language from Figure 3.
There, 〈Pair〉 appears on the right hand side of 〈SExp〉 and 〈SExp〉 appears
on the right hand side of 〈Pair〉, forming a cycle. The way to break cycles
is to not put the nodes as children directly, but make the possibly cyclic
reference known to Truffle by using its support for functions. Thus, to break
the cycles in our grammars, we treat nonterminal definitions like function
definitions and appearances of nonterminals on the right hand side as calls
to the respective function.

We start with a simple version that uses Truffles special support for
defining and calling functions to replicate the behavior of our interpreter
from the previous section. The UnoptimizedNonterminalCall node in Figure 10
is the Truffle-enabled version of the NonterminalSymbol node from Figure 7.
We declare one child node that is provided by Truffle, the IndirectCallNode. It
can be used to make function calls by calling its call method. It is called an
indirect call, because we pass the function object as an argument during
runtime. This function object is the CallTarget. We also changed the parsing
state to cache call targets, not AST nodes directly. Call targets basically wrap
a part of the AST in a parent-less root node, that knows how to execute itself.

13

So in essence, we do the same thing as before: we look up the right hand
side of the nonterminal we want to parse in the environment and parse
according to it.

Time for the first optimization. This is where Truffle really shines. Most
of the time, a nonterminal will not have changed from what it was the last
time we looked it up and called it. We hope to make parsing faster by
caching the lookup. In traditional just-in-time compiler lingo we would like
to have a (monomorphic) inline cache for the result of the lookup.

We introduce two new AST node types: an UninitializedNonterminalCall and
a CachedNonterminalCall. An uninitialized nonterminal call is the state of a
nonterminal on the right hand side that has not yet been invoked. See the
implementation in Figure 11. Upon execution for the first time, this node
will look up the right hand side of the nonterminal in the environment and
replace itself with a CachedNonterminalCall node that caches the result of the
lookup. There is an alternative mode of operation where it replaces itself
with an UnoptimizedNonterminalCall like we saw before. We use this to compare
the two alternatives against each other. To avoid runtime overhead, we
tell Truffle that the kind of replacement we want to perform will never
actually change at runtime using the CompilationFinal compiler directive. This
allows Truffle to partially evaluate the switch statement and only keep the
appropriate branch. This might be unnecessary, because we also assert
that the UninitializedNonterminalCall will never actually be part of compilation.
During the first execution, the node will replace itself and Truffle will only
compile nodes that have been executed more often than some configurable
threshold.

Similar to the UnoptimizedNonterminalCall, the CachedNonterminalCall uses a
special kind of child node to actually call the function. In this case this is
a DirectCallNode, as seen in Figure 12. The difference to an indirect call is
that we can not change the call target at every invocation of the call method,
instead we pass the CallTarget (Truffle’s representation of a function body)
during initialization. This is where the caching happens. The CallTarget is the
result of the lookup we did when we replaced the UninitializedNonterminalCall
node by this node. We cache the function body inside the DirectCallNode.

When we execute the CachedNonterminalCall we want to call the cached
function body. Before we do, we need to check that our assumption holds,
namely that this nonterminal has not been changed since the last time
we called this nonterminal. Truffle provides specialized support for this.
Next to the function body, we store an Assumption object. An assumption
can be checked and invalidated. Before we call the function body that is
cached inside the DirectCallNode, we call the Assumption’s check method. If the
assumption does not hold any longer, that is, has been explicitly invalidated,
it will throw an InvalidAssumptionException. Should that happen, we revert to
the uninitialized state, where we will do a new lookup and again cache the
result.

14

class UninitializedNonterminalCall extends GrammarNode {
enum CallNodeType { UNOPTIMIZED, CACHED }

@CompilerDirectives.CompilationFinal
static CallNodeType callNodeType = CallNodeType.CACHED;

final String nonterminalName;

boolean executeParse(VirtualFrame frame) {
CompilerAsserts.neverPartOfCompilation();

GrammarNode replacementNode;

switch (callNodeType) {
case UNOPTIMIZED:

replacementNode =
new UnoptimizedNonterminalCall(state, nonterminalName);

break;
case CACHED:

CallTarget alternatives = state.lookupInEnv(nonterminalName);
replacementNode =

new CachedNonterminalCall(state, alternatives, nonterminalName);
break;

}

replace(replacementNode, ”Call nonterminal ” + nonterminalName);

return replacementNode.executeParse(frame);
}

}

Figure 11: Uninitialized call site of a nonterminal.

15

class CachedNonterminalCall extends GrammarNode {
final String nonterminalName;
final Assumption grammarUnchanged;

@Child private DirectCallNode directCallNode;

CachedNonterminalCall(ParserState p, CallTarget alternatives,
String nonterminalName) {

super(p);
this.nonterminalName = nonterminalName;
this.grammarUnchanged = p.cacheNonterminal(nonterminalName);
directCallNode = Truffle.getRuntime().createDirectCallNode(alternatives);

}

boolean executeParse(VirtualFrame frame) {
try {

grammarUnchanged.check();
return (Boolean) directCallNode.call(frame, new Object[0]);

} catch (InvalidAssumptionException e) {
GrammarNode replacementNode =

new UninitializedNonterminalCall(state, nonterminalName);
replace(replacementNode, ”Nonterminal ” + nonterminalName + ” changed”);
return replacementNode.executeParse(frame);

}
}

}

Figure 12: Call of a nonterminal with inline cache.

16

According to Phil Karlton “there are only two hard things in Computer
Science: cache invalidation and naming things.” Next to the environment
that stores nonterminal function bodies, we store a reference to the same
Assumption object that guards the inline cache. When we change the right
hand side of a nonterminal we invalidate the matching assumption. It might
be more efficient to have a single assumption for the whole grammar. This
choice is open for debate. One would need a comprehensive, real world
benchmark suite for changing grammars for a definitive answer. As it is,
the behavior mimics the behavior of the interpreter from the last section.
We can change the right hand side of a single nonterminal and only affect
the places where it is actually used. Thus, when combining grammars, we
only work on the interaction points of the current and new grammar, not
the entire existing grammar.

5 Generalized LL Parsing with Truffle

We saw how to systematically generate a recognizer for a grammar by
hand. We wrote an interpreter that exhibits the same behavior but works
for different grammars and even allows us to change the grammar. Using
Truffle, we turned that interpreter into a just-in-time compiler. In this section,
we discuss doing the same thing to a generalized LL parser. This is not a
detailed explanation of generalized LL parsing itself. We will only highlight
important differences to the grammar interpreters we saw before.

We started with an existing code base. Tillmann Rendel implemented a
generalized LL parser based on the work of Scott and Johnstone [10]. Scott
and Johnstone describe how to construct a parser from a grammar, similar to
what we did in Section 2. Rendel’s implementation is a grammar interpreter,
written in Java, similar to the interpreter in Section 3. Its source code is
available at https://github.com/Toxaris/gll. For this thesis, we attempt
to do what we did in Section 4, namely fork the interpreter and modify it to
work with Truffle.

We chose to work with an existing code base, because GLL parsing is
difficult. Writing a correct implementation is not a trivial amount of work.
Rendel’s implementation is, unlike what Scott and Johnstone originally
describe, an actual parser, not just a recognizer. Instead of a parse tree, it
produces a Tomita-style shared packed parse forest (SPPF) [13]. The SPPF is
a data structure that can be used to represent the kinds of parse trees that
occur when parsing with ambiguous grammars. It uses maximal sharing to
avoid exponential blow up. Our Truffle-enabled GLL parser uses the same
data structures unchanged.

Rendel’s GLL parser is a grammar interpreter already, which appeared
to work in our favor because Truffle works with AST interpreters. Un-
fortunately, the grammar representation was not actually tree shaped but

17

https://github.com/Toxaris/gll

a directed graph, including cycles and nodes with multiple parents. We
avoided multiple parents and broke cycles by duplicating terminal symbols
and wrapping nonterminal symbols in Truffle’s call targets, as before. We
made the AST nodes extend the Node class and annotated children as we saw
in Section 4. According to the Truffle documentation, one should never hold
a reference to an AST node directly, except to a node’s own children, which
are marked by annotations. In GLL we do that all the time. AST nodes
are referenced, for identification purposes, in the SPPF, GSS (see below),
and other AST nodes that are not children. This might be a problem when
rewriting the AST, which we, for the most part, do not do. Everything seems
to work fine for now, but this is something that should be fixed. However,
this is a very unforeseen restriction, from the point of view of the original
implementation. In retrospect, we might have been better off starting from
scratch, ignoring the SPPF at first, but focusing on getting the Truffle-related
aspects right.

Control flow in the recursive descent recognizer was simple. Start with
the start symbol. When we encounter a nonterminal symbol, we call it,
which amounts to a push to the call stack. Parsing a terminal symbol either
succeeds or fails, either way we pop the stack and continue. The same
applies when we reach the end of a sequence or run out of alternatives, with
the appropriate return values.

Control flow in GLL parsing is more difficult. Where we have a simple
call stack in our recognizer, the GLL parser uses a graph structured stack
(GSS). In contrast to a simple stack, a stack frame in the GSS can have
multiple children and multiple parents. When we parse a nonterminal in
GLL, we parse, conceptually, all alternatives at once. Since a nonterminal
can occur more than once on a right hand side, we deliver results to more
than one parent stack frame at the same time.

There is only one Java call stack and it is limited. To simulate the above
behavior and infinite stack space there is a trampoline in the GLL parser.
Instead of calling into functions, the GLL parser registers a process object
with the trampoline, to be executed later. If you are so inclined, you can think
of the process objects as continuations. There are two nested main loops in
the GLL parser, as seen in Figure 13. The outer is over every character of the
input stream. The inner is over the set of active processes that need to still
run with the current input character as their input. There is a set of future
processes, that become the set of active processes when we parse the next
input character.

Processes are call targets in our Truffle-enabled GLL parser. Unfortu-
nately, we create processes at runtime, depending on the grammar and
the input string. This is quite terrible for Truffle, because Truffle expects
the AST to be stable, because it does partial evaluation on the tree. If the
tree is not actually static data (after some rounds of rewriting, optionally),
there is no point to partial evaluation. The grammar AST itself is of course

18

public void parse(final Reader reader) throws IOException {
state = new ParsingState();

state.start = start;
state.active.add(Truffle.getRuntime().createCallTarget(

new StartProcessRootNode(new Initial(), start)));

int codepoint;
do {

codepoint = nextToken(reader);
state.nextToken(codepoint);

while (!state.active.isEmpty()) {
final CallTarget current = state.active.poll();
current.call(state, codepoint);

}
} while (codepoint >= 0);

Figure 13: Main loops of the Truffle-enabled GLL parser.

reasonably static, unless we change it, for which we have guards, like we
saw in Section 4. We tried to eliminate some of the processes by doing work
immediately, instead of registering it with the trampoline. Unfortunately,
we were not able to eliminate all of them, especially not the future processes,
which are supposed to be run when parsing the next token. With some
clever grammar analysis, it might be possible to fix the set of processes. The
GSS should also depend on the grammar, at least partially. For now, we
have to treat it as entirely dynamic, meaning Truffle will not do anything to
speed it up.

Truffle should be able to eliminate virtual calls that determine whether
we are dealing with a terminal symbol or nonterminal symbol, for example.
However, the normal JVM just-in-time compiler probably does the same
thing. We can not expect impressive performance from our Truffle-enabled
GLL parser. Not without some more research into analyzing grammars to
predict control flow.

6 Study 1: Recursive Descent Recognizers

Implementing the Truffle-based grammar interpreter from Section 4 was
a proof of concept experiment to gather experience with using Truffle for
implementing parsers. In this section we describe the accompanying ex-
ploratory performance study. We will see the handwritten recognizers from
Section 2 and the Truffle-enabled interpreters from Section 4. This study

19

〈S〉 ::= EOF
| 〈C0〉

〈Ci〉 ::= 〈Ci+1〉 ∀ 0 ≤ i < n

〈Cn〉 ::= 〈E〉

〈E〉 ::= ‘a’ 〈S〉

(a) Loop on the inside.

〈S〉 ::= EOF
| 〈C0〉 〈S〉

〈Ci〉 ::= 〈Ci+1〉 ∀ 0 ≤ i < n

〈Cn〉 ::= 〈E〉

〈E〉 ::= ‘a’

(b) Loop on the outside.

Figure 14: Chained nonterminals grammars for the language a∗.

gives a rough idea of what kind of performance gains to expect. The results
are surprisingly positive. The Truffle-based interpreters with the inline cache
optimization appear to outperform the handwritten recognizers.

6.1 Goals

With this first study we establish an upper bound for expectations regarding
the application of Truffle towards parsing. We perform multiple experiments
designed to show off Truffle at its best. If Truffle does not do well in this,
there would be no reason to expect it to perform well in the more involved
case of GLL parsing.

We use a simple (regular) language, namely a∗, for comparing multiple
recognizer algorithms and grammars against each other. Both grammar
variants in Figure 14 contain a chain of nonterminals. At the end of the chain
we parse a single ‘a’ and start again from the beginning. The grammars
differ on where the recursion happens. In the grammar from Figure 14a the
recursion is at the end of the chain. In the grammar from Figure 14b the
recursion happens after we return from the chain.

We compare the Truffle-enabled grammar interpreter from Section 4
against handwritten parsers in the style of Section 2. Some of the run
time will fall upon extracting a character from a string and comparing it
to the reference terminal symbol. We use these convoluted grammars to
inflate the effect of nonterminals have on parse time. The parsers interesting
differences relate to nonterminals, as does the inline caching for lookups in
the optimizing Truffle variant.

The chained nonterminals should also give us an idea about the cost of
abstraction. Grammar composition happens on nonterminals, so additional
nonterminals are extension points. We aim for unused extension points to
be very cheap, performance-wise.

20

boolean s() {
return eof() || c0(); }

boolean c0() { return c1(); }
boolean c1() { return c2(); }
[...]
boolean c200() { return e(); }
boolean e() {

return character(’a’) && s(); }

(a) Loop on the inside.

boolean s() {
return eof() || (c0() && s()); }

boolean c0() { return c1(); }
boolean c1() { return c2(); }
[...]
boolean c200() { return e(); }
boolean e() {

return character(’a’); }

(b) Loop on the outside.

Figure 15: Handwritten recognizers for the chained nonterminals grammars.

public static boolean optimal(String s) {
final int length = s.length();
for (int i = 0; i < length; i++)

if (s.charAt(i) != ’a’)
return false;

return true;
}

Figure 16: Perfect recognizer for a∗.

6.2 Setup

In this study, we use two variants of the grammar from Figure 14 for the
language a∗. One with the loop at the inside (Figure 14a) and one with the
loop at the outside (Figure 14b). We compare four implementations:

• First, handwritten recognizers in the style of Section 2. There is one
for each variant of the grammar with chain length 200. See their
implementation in Figure 15.

• Second, the Truffle-enabled grammar interpreter from Section 4 using
indirect calls.

• Third, the same Truffle-enabled grammar interpreter, this time using
the inline cache with direct calls.

• Fourth, an “optimal” recognizer for a∗, which is a loop over the input
string that checks that every character is an ‘a’, as seen in Figure 16.

We run three distinct benchmarks:

21

Hardware Specs

CPU Intel(R) Core(TM) i5-4670 CPU @ 3.40GHz
RAM 16GB DDR3

Software Version

Operating system Linux 3.16.0-2-ARCH #1 SMP PREEMPT
Mon Aug 4 19:04:45 CEST 2014 x86 64

Java Virtual Machine OpenJDK 64-Bit Server VM (build 25.0-b63-
internal-graal-0.3, mixed mode)

Truffle 0.3 (binary release bundled with JVM)
Scalameter 0.5-M2 (for Scala 2.11.x)
Scala 2.11.0

Figure 17: Hardware and software used for benchmarking.

• First, we compare the two variants of the Truffle-enabled grammar
interpreter, with direct and indirect calls on the loop on the inside
variant of the grammar, for chain lengths 1, 50, 100, 150, and 200.

• Second, we compare the same parsers on the loop on the outside
variant of the grammar for the same chain lengths.

• Third, we compare the handwritten recognizers, which use the chain
length 200, and the “optimal” recognizer, which is the same for all
chain lengths.

We use Scalameter for benchmarking. Each benchmark instantiates a
new Graal/Truffle-enabled JVM using the following command line options:
-server -Xss64m -G:TruffleCompilationThreshold=1. We rely on Scalame-
ter to warm up the just-in-time compiler for the normal Java code and
increased the minimum number of warmup runs to 1000. For the Truffle-
based interpreters, we run our own warmup loop that parses the test string
10000 times to give Truffle time to make sure the AST has been rewritten,
Graal has been invoked, and we actually use the optimized code. We make
sure to keep the ASTs stable between warmup runs and use the same ASTs
for the actual measurements. After warmup, we parse the input string a150

10000 times with every variant in an AABB scheme and measure runtime.
Benchmarks were run on an otherwise idle desktop computer. See soft-

ware versions and hardware specs in Figure 17. Find the benchmark code
together with the benchmarked code at https://github.com/fehrenbach/
parsers.

22

https://github.com/fehrenbach/parsers
https://github.com/fehrenbach/parsers

6.3 Data

Figure 18 shows the results of the first two sets of benchmarks. There are four
distinct plots, for the four combinations of grammar variant and whether
direct or indirect calls were used by the interpreter. The headline above
each plot lists the particular combination where inner loop means we use a
grammar with the loop on the inside as in Figure 14a; outer loop means we
use a grammar with the loop on the outside as in Figure 14b; cached means
the interpreter caches the lookup of nonterminals and uses guarded direct
calls; and indirect means the interpreter performs a lookup and indirect call
for every nonterminal. On the x axis we see the different chain lengths.
Each bar’s height represents the mean parse time in milliseconds for the
string a150. Note that each plot has its own y axis. The small horizontal
black line at the top of each bar is the 95% confidence interval of the mean.
The confidence intervals are so tight that they appear as single black lines
only. The slanting black line in each plot is a linear regression line. Their
equations can be found in the table below the plots in Figure 18. We use all
of the data points for the linear regression, not only the means.

Figure 19 shows descriptives, quantil-quantil plots, and box plots for
the handwritten and optimal parsers from our third experiment, as well as
for the direct call interpreter versions with chain length 200 of the previous
two experiments. The text above each table of descriptives indicates which
parser’s data the respective row shows. For example, the first row shows the
descriptives, Q-Q plot, and box plot for the parse time in milliseconds for the
handwritten recognizer from Figure 15a. The descriptives list the minimum,
first quartile, median, arithmetic mean, third quartile, and maximum time,
in milliseconds, to parse the string a150.

The box plots on the very right of each row are hardly recognizable
as such. They show that we have many measurements very close to each
other with a couple of heavy outliers. Since the box plots do not give a good
indication of the distribution of measurements, we created Q-Q plots against
a normal distribution, found in the middle of each row. If the measurements
were a “perfect theoretical” normal distribution, all black points would lie on
the blue line. Again, we see the outliers that represent a much higher parse
time than what we would expect if the data followed a normal distribution.
Except for the outliers, most of the data follows a normal distribution rather
well. However, the first plot shows many outliers and seems to be a bit
skewed to the right. The second plot indicates that the measurements are
skewed to the left compared to a normal distribution, that is, there are a
couple more very short parse times than what we would expect. The third,
fourth, and fifth plots are almost perfect. Although, in the fifth plot, the
steps might indicate that we actually deal with three distinct populations.

Figure 20 shows the mean parse time of the five fast parsers as bars next
to each other. This does not show anything we did not see in Figure 19

23

Variant Linear regression equation (n = chain length)

inner loop, cached 0.002369 + 0.0001043n
inner loop, indirect 0.1643 + 0.01630n
outer loop, cached 0.001004 + 0.00001881n
outer loop, indirect −0.5234 + 0.01733n

Figure 18: Mean parse time against chain length for different parsers and
grammar variants.

24

Handwritten,
loop on the inside

Min. 0.03146
1st Qu. 0.03216
Median 0.03258
Mean 0.03279
3rd Qu. 0.03324
Max. 0.05722

Handwritten,
loop on the outside

Min. 0.005912
1st Qu. 0.006784
Median 0.006810
Mean 0.006764
3rd Qu. 0.006838
Max. 0.016328

Optimal parser

Min. 6.300e-05
1st Qu. 6.500e-05
Median 6.482e-05
Mean 6.700e-05
3rd Qu. 2.490e-04
Max. 0.06403

Direct call Truffle,
loop on the inside

Min. 0.02451
1st Qu. 0.02491
Median 0.02498
Mean 0.02501
3rd Qu. 0.02505
Max. 0.06403

Direct call Truffle,
loop on the outside

Min. 0.004746
1st Qu. 0.004880
Median 0.004911
Mean 0.004946
3rd Qu. 0.005013
Max. 0.009586

Figure 19: Q-Q plots, descriptives, and box plots for the fast parsers with
chain length 200.

25

Figure 20: Mean parse times for the fast parsers with chain length 200.

already, but makes comparing the five fast parsers against each other easier.
We see that the variants of the grammar with the loop on the outside are
significantly (the confidence intervals clearly do not overlap) faster than
the loop on the inside variants for both the handwritten parsers and the
caching Truffle-enabled grammar interpreters. Comparing the handwritten
recognizers against the Truffle-enabled grammar interpreters, we see that
the interpreters are actually significantly faster for the respective grammar
variants but not so fast as to be consistently faster irrespective of the gram-
mar variant. The optimal recognizer from Figure 16 is clearly faster than
even the fastest recursive descent recognizer.

6.4 Interpretation

Barring gross mistakes during benchmarking, for a discussion of which see
the next section, the data seems to back up our hope that Truffle can be used
on grammar interpreters with reasonable results. In fact, for this particular
grammar, the Truffle-based interpreters actually outperform recognizers
that people would conceivably write by hand. And this is with interpreters
that do more work than the handwritten recognizers, because those do not
support changing the grammar and therefore need not and do not check
guards that the grammar is unchanged. This is quite surprising and far
exceeds our hope that the just-in-time compiled interpreters might be within
one order of magnitude slower than an equivalent handwritten recognizer.

We do not know exactly why the Truffle-based interpreter is this fast.
Truffle is not forthcoming about what it does internally and reading the
generated x86 assembly is beyond our ability. Our best guess is that the
partial evaluator eliminates function calls, as it is meant to do. From the
limited amount of debug information we get out of Truffle, it seems that

26

it inlines 18 nodes at a time. For chain length 200, that would amount
to only 12 actual function calls, compared to the 200 function calls that
the handwritten recognizer performs. This could offset the 200 guards we
need to check, especially since those are designed to be very fast if their
assumption holds.

We can interpret the chain length experiment in various ways. On the one
hand, we see that the cost of abstraction, as measured by additional steady-
state runtime for each nonterminal, is negligibly small for the optimizing
just-in-time compiling interpreters. If we take the linear model literately, it
is somewhere around 0.0001043 or 0.00001881 milliseconds per nonterminal
for a string of length 150. The grammars for some small languages, like
SQL dialects, consist of about 200 nonterminals. This would mean that one
extension point (one additional nonterminal that only does forwarding)
would cost us a couple of picoseconds per character parsed.

On the other hand, parse time certainly depends on the size as well as
the structure of the grammar. It takes less time to parse our test string with
the loop on the outside, chain length 200 grammar, than it takes to parse it
using the loop on the inside grammar variant with only a chain of length
50. Grammar optimization on the AST level might yield order of magnitude
improvements. We can think of the optimal parser from Figure 16 as the
end of that particular road.

6.5 Threats to Validity

We measure wall-clock times well below microseconds in some cases. Tim-
ing resolution should not be a problem but scheduling and migration of
processes between CPU cores can be a problem. We compensate with a high
amount of individual measurements. The bar plots and tight confidence
intervals indicate that we are not heavily hit by scheduler issues. The Q-Q
plots indicate that there is a large normally distributed portion of our data
which usually means we collect enough measurements to have the law of
large numbers apply.

There are plenty of environmental influences we do not control and that
persist across one JVM invocation. They might explain the somewhat sur-
prising top-right graph in Figure 18. There we see that the 150 nonterminals
chain grammar is actually faster than the 100 nonterminals chain grammar.
The tight confidence intervals indicate that this was actually the case for
this JVM invocation, not some random scheduler interruption. We do not
know the reason for this, it might be some alignment issue with some cache
boundary or something else entirely. In a future study, we would like to
run benchmarks in multiple JVM invocations, across more machines and
maybe reduce the number of individual measurements to keep the overall
experiment duration feasible.

We only measure steady-state performance, that is parse time after the

27

just-in-time compiler did its work. In a way this is unreasonable, since our
original target use case is parsing files whose language changes during pars-
ing. However, compilation time almost entirely depends on Truffle internals
since we do not yet do any elaborate analysis during AST rewriting. This
means, if Truffle turns out to be slow to kick in, we can do little about that. It
also means, that we benefit from all the work that is done on Truffle. If there
should be issues with start up performance of Truffle-based interpreters,
there are just-in-time compilation experts who will be addressing them in
Truffle and we will benefit from their work immediately.

The plots that compare the handwritten recognizers against the opti-
mizing Truffle-based interpreters do not compare equals. Truffle-generated
code is compiled by Graal whereas the handwritten recognizers and the
optimal parser are regular static Java code that is compiled by the default
compiler back end in the JVM. Someday, Graal might become the default
for any Java code. Until then, this comparison makes sense because most
people will only ever use the current default compiler.

Almost every set of measurements has at least one outlier that is more
than double the average, and even third quartile, parse time. This might be
the first measurement in a series, where the actual machine code is not yet
in the instruction cache. Scalameter does not make this information readily
available. We hope that in the future, Scalameter will do the reasonable
thing, which is to discard the first measurement [7].

Throughout this section, we dealt with recognizers, not parsers. We
do not construct parse trees, but only solve the word problem, does this
string match our grammar or not. For this exploratory study, this is fine. We
intentionally constructed an interpreter where it should be easy for Truffle to
shine. This also means that these results can not immediately be generalized
to every kind of grammar interpreter. Still, we see that Truffle can be used
successfully on something that is not obviously a programming language
interpreter.

7 Study 2: Generalized LL Parsing

Truffle did well on the simple recursive descent recognizers we saw in the
first study. With this second study we aim to discover how well Truffle does
with the significantly more complicated GLL parser.

7.1 Goals

In this study, we compare two GLL implementations against each other. The
first was written in Java and is a grammar interpreter already. The second
shares almost all of its code, notably the parse forest data structures and the

28

graph structured stack. It was modified to work with Truffle, as detailed in
Section 5.

Even though most of most programming languages syntax is context-
free, syntax definitions are mostly in grammar formalisms that have more
features than basic context-free grammars. Both of our implementations
“only” support context-free grammars. They do not have special support
for disambiguation or scannerless parsing like for example the SDF parser
SGLR does. As a consequence we did not attempt to parse any real language.
Instead, we reuse several context-free grammars, that are already used for
testing, for benchmarking. In addition, we use the chained nonterminal
grammar with the loop on the inside from Figure 14a.

These grammars are not representative of the kind of real world pro-
gramming language grammars we would like to parse. However, since our
two parsers share most of their code, these tests should give an impression
of the effect Truffle can have.

Again, we do not measure start up performance. This seems contrary to
the SugarJ setting we described in Section 1. However, we are reasonably
certain that a grammar interpreter does much better than the original parser
with the ahead-of-time generated parse table for parsing a single file. It is
more interesting to us whether a Truffle-based interpreter is faster, slower,
or as fast as a regular grammar interpreter.

7.2 Setup

Unless otherwise noted, we use the same setup as in our first study. See
Section 6.2 for details.

We use two GLL implementations:

• The first is a plain Java implementation that can be found at https:
//github.com/Toxaris/gll. We only changed this implementation to
also support parsing multiple streams with one instantiation of the
grammar, as the Truffle-enabled parser does. Find the changes and
the benchmark code at https://github.com/fehrenbach/gll on the
branch for-upstream.

• The second parser is a fork of the first parser that was modified to
work with Truffle. The two implementations share all of the data
structure code and most of everything else. Find the fork at https:
//github.com/fehrenbach/gll.

We performed four different benchmarks with each parser. Every bench-
mark starts a new JVM and does warmup as described in Section 6.2.

The first benchmark uses the chained nonterminals grammar with the
loop on the inside that we already saw in the first study. As before, we use
the chain lengths 1, 50, 100, 150, and 200 and string to be parsed is a150. We

29

https://github.com/Toxaris/gll
https://github.com/Toxaris/gll
https://github.com/fehrenbach/gll
https://github.com/fehrenbach/gll
https://github.com/fehrenbach/gll

〈S〉 ::= ε | [a-Z] | ‘ ’
| ‘:’ | ‘:’ 〈P〉
| ‘(’ 〈S〉 ‘)’
| 〈S〉 〈S〉

〈P〉 ::= ‘(’ | ‘)’

(a) Balanced smileys grammar.

String

1 ((:))
2 (((((((((((((((((((())))))))))))))))))))
3 ((((((((((((:))))))))))((((((((((:())))))))))))
4 ((((((((((((:))))))))))((((((((((:)))))))))))))
5 (((((((((())))))))))
6 ((((((((((:)))))))))) ((((((((((:)))))))))) ((((((((((:)))))))))) ((((((((((:)))))))))) ((((((((((:)))))))))) ((((((((((:))))))))))
7 ((((((((((:)))))))))) ((((((((((:)))))))))) ((((((((((:)))))))))) ((((((((((:)))))))))) ((((((((((:)))))))))) ((((((((((:)))))))))))
8 ((((((((((:))))))))))
9 ((((((((((:)))))))))))
10 ((:):::(()()):)(()()():())aaa)(:(a:)a:((())a(((a(:())aa():a:)((()):)(()(:)(a())a:()a)a():(
11 ()(((a)((aa)))a)a()(a)(aa:a)()(((:())aa)):()():():a:(a)(a())a:)::a:(aa:):()((a:)())aa)a(a:)
12 ()((:a(a()()a))())((:a(:a)(()a((((a((a(()(:aa()()()))):)(():):)(:(a))():(())(():()):):(()a))
13 ():)((()():(:())))::aa((((:(((:)))::a:(:))()a)):(a):::((()a((a(aa(():))(():())((::a)a)):)()
14 ():)a((a:((aaa(()))(((()a))()))a(:)):)a((:())(a:(:):((a(:(::())a()())::()a)(a)):((aa)a(:(())
15 ()a(:)(a:a):(())):a()():((a(:):a()()::)(a:)(()a((a:)(a)a(a:a:)(a)a(a:(()()()::a()a()(()a:())))
16 (:)
17 (::a((a)a:()):):a)aa:)a(:::))(a())aa(a():))(:)a)((():)(:a:)a))):a(a)((:()(()())a))()a((()a))
18 (a((f((g(((g((:))))g))))))::((((((((((((((((((((:))))))))))))))))))))

((:))
19 (a((f((g(((g((:))))g))))))::((((((((((((((((((((:))))))))))))))))))))

((:)))
20 :(a):(:)aa)a(:()::():))a:aaa:)(:)((()()))a()(((()(:)))(:(aa:()())())a((a)a:(:()))(a((():)))
21 :)()((a)):(():a:a:)(:a)):)(()(:)::::(a(::a())(a):(:((((:(aa(()))a)(((((((((()a()a):)))((:)))))))))
22 ::((:))(((:)(aaa)(a())()(a:)(:)(:)()):)a())aa)())(():a):()::):)a()())a()):):(:a)a):()(a)(a)
23 :a:)(:))()(()()a)aaa::a()()a:()()a::)((()(a(a))))try implementing sleep sort if you are stuck:(:)a)
24 a(a)::(((::)))())((a)(:((:a())):((::(:()(a)))i am trapped in a test case generator :(:(a(:::))
25 hacker cup: started :):)
26 hello world
27 i am sick today (:()

(b) Test strings.

Figure 21: Balanced smileys benchmark data.

perform 1000 measurements with each chain length and implementation.
Each parser call also reinitializes the internal parser state so we can use the
same grammar and do not have to warm up the Truffle AST.

The second set of benchmarks is about balanced parentheses and smi-
leys. The language described by the grammar in Figure 21a contains only
strings where opening and closed parentheses match, except that it does
not consider the parentheses in the smileys :) and :(. We used the strings
in table 21b which should all be elements of the language. We configured
Scalameter to perform 100 measurements for each test string.

The third set of benchmarks uses the grammar Γ2 from the original paper
on GLL [10]. This grammar is a very ambiguous one for the language b+ as
seen in Figure 22a. We parse the strings b, bb, bbbb, . . . , b64 100 times each.

The fourth set of benchmarks uses a variant of the grammar from before.

30

〈S〉 ::= ‘b’
| 〈S〉 〈S〉 | 〈S〉 〈S〉 〈S〉

(a) Very ambiguous grammar (Γ2 [10]).

〈S〉 ::= ‘b’ | 〈S〉 〈S〉 〈A〉

〈A〉 ::= 〈S〉 | ε

(b) Factored grammar (Γ∗
2 [10]).

Figure 22: Two variants of a grammar for the language b+.

In the variant in Figure 22b the nonterminal 〈A〉 has been factored out. As a
result, parsing should be faster. We parse the strings b, bb, bbbb, . . . , b64, b128

100 times each.

7.3 Data

Figure 23a compares the Truffle-enabled parser to the existing plain Java
GLL parser. The Truffle-enabled parser is always on the left and in a red
color. The original GLL parser is on the right and colored turquoise. We
omitted confidence intervals because they are as tight as we saw in Study 1.

The first two plots report mean parse time for the chained nonterminals
grammar and the balanced parenthesis with smileys grammar. Lower bars
are better, and we see that the original plain Java GLL parser is faster for
every test string.

The second two plots are log scale. Again, lower bar is better. For the
downwards-pointing bars on the left side of each plot, the taller bars are
actually better.

The Truffle-enabled parser does better than the original plain Java GLL
parser in only three benchmarks, namely the test strings b16, b32, and b64

when parsed with the factored grammar from Figure 22b.
Comparing relative performance is difficult for the log scale plots and

the many test strings in the smileys benchmark. We calculated the speedup
the Truffle-based parser gives us compared to the plain Java GLL parser by
dividing the means for every test string in every set of benchmarks for the
two parser variants. Find the descriptives in the table in Figure 23b. Below
1.0 means the original plain Java GLL parser is faster. Above 1.0 means the
Truffle-enabled parser is faster.

As expected, only the factored grammar benchmark has any speedups
above 1.0. The highest is 1.1550, that means the Truffle-based parser was on
average 15% faster than the original plain Java GLL parser for one set of test
strings, namely b64.

Across all test strings with all four grammars, the Truffle-based parser is
on average about 20% slower. At the worst, it is a good 30% slower and it is
up to 15% faster for some select test strings with the factored grammar.

31

(a) Benchmark results for the existing plain Java GLL parser and modified Truffle-
enabled parser.

Benchmark Min. 1st Qu. Median Mean 3rd Qu. Max.

Chains 0.8370 0.8576 0.8834 0.8838 0.8902 0.9509
Smileys 0.7676 0.7832 0.7929 0.7996 0.8073 0.8918

Ambiguous 0.6948 0.7022 0.7040 0.7372 0.7596 0.8382
Factored 0.6767 0.7494 0.9403 0.9144 1.0470 1.1550

Overall 0.6767 0.7697 0.7988 0.8188 0.8376 1.1550

(b) Speedups (below 1.0 means original plain Java GLL parser is faster).

Figure 23: Second study results.

32

7.4 Interpretation

The Truffle-enabled GLL parser is slower than the original plain Java im-
plementation. This does not come as a surprise, exactly. Truffle seems to
do best when there is a lot of computation and control flow that can be
eliminated by partial evaluation. Our GLL implementation does little actual
computational work for every symbol in the grammar. We removed some
of the dynamism by doing work immediately, instead of scheduling it to be
done later. It does not seem to be enough.

A 20% slow-down seems pretty bad, but fortunately we have barely
scratched the surface on what could be done in a GLL parser. The only
AST rewriting we do, is caching nonterminal lookups, which are only one
virtual call in the original GLL parser. We trade that for repeated indirect
calls into Truffle code, and we saw in the first study that this might not be
a good idea. There is much work to be done in the area of (just-in-time)
analysis and specialization of grammars. For one example, compare the
ambiguous grammar with its factored version. Of course it is not as easy
as just factoring the grammar. We deal with a real parser here, not just a
recognizer, thus we would need to produce a parse tree (or forest) that is
consistent with the unfactored grammar, even if we perform factorization
behind the scenes.

We can also aim to help Truffle by making more of the control flow
visible to the partial evaluator. The graph-structured stack (GSS) is partially
dynamic and partially static data, which is notoriously difficult to deal with
using offline specialization [9]. While Truffle claims to use online partial
evaluation [14], it is still necessary for the language implementer to explicitly
annotate static parts of the input, namely the AST. This has a distinct feeling
of offline partial evaluation to it. However, it is possible to additionally
perform AST rewriting to tell Truffle about dynamic parts of the input that
should be considered static, at least until it changes, which must be guarded
against to allow ford deoptimization. In the future, we look towards using
this mechanism to discover the static part of the GSS by analyzing the
grammar and rewriting to specialized nodes that convey this information to
Truffle.

In summmary, there is a slow-down, but it is not terrible. If we are so
inclined, we can choose to interpret it as warranting further research and
engineering into grammar analysis before writing off the idea of just-in-time
compiled parsers.

7.5 Threats to Validity

We do not use grammars of practical (programming) languages for bench-
marking. This is because there is no scanner for our parser and it does
not support scannerless parsing. However, our test grammars do exercise

33

different parts of the parser. The chained nonterminal grammar does have
as many productions as a small programming language. The ambiguous
grammar is ambiguous. It shows that we at least did not break the part of
the GLL algorithm that deals with ambiguity. Thus, we claim at least some
external validity.

The two parsers share most of their code. We can be confident that we
actually measure the difference Truffle makes. Keep in mind however, that
part of the changes were about doing more work immediately instead of
scheduling it to be done later, in the Truffle-enabled parser. In theory, this
should make a big difference for Truffle, because it allows partial evaluation
to actually span more than one AST node, and a small difference for the
original plain Java parser.

We share some of the experimental setup with the first study. We dis-
cussed threats to validity for that as well, in Section 6.5. What was said
there about measurement accuracy applies here as well, though to a lesser
extent because parse times are in general higher. Everything else, about
JVM invocations, compilers, and outliers applies to this second study also.

For the very close result in the factored grammar, b128 benchmark, we
could have performed a t-test. However, since this is an exploratory study
without a formulated hypothesis we chose not to. 95% confidence intervals
of the means are too tight to be seen in the plots, so, by rule of thumb, the
difference of means is statistically significant.

8 Discussion

We were able to answer some, but not all, of the questions we asked in the
introduction. Our implementation work demonstrates that it is indeed pos-
sible to use existing just-in-time compilation technology, specifically Truffle,
to implement parsers. This immediately answers another question: yes, we
can start parsing with the grammar as it is, without first generating a parse
table. We still deal with interpreters that can be run immediately. Machine
code generation happens in the background but only after a number of
executions anyway. Nonterminal resolution is dynamic so we can indeed
incrementally modify the parser, keeping unchanged parts. With guarded
speculative inline caching and deoptimization we even seem to be able
to avoid some of the runtime overhead that one would suspect from the
additional flexibility.

We did not measure startup performance in any of the performance
studies. This may seem odd considering the setting that motivates this work.
However, we already know that a grammar interpreter is much faster than
an ahead-of-time generated parser for a single file. The obvious practical
implementation would be to start parsing with the interpreter while ahead-
of-time compiling a parser in the background and switching once that is

34

done. There are much more interesting research questions in just-in-time
compiled parsers.

We did not implement optimizations on the grammar level. In the
second performance study (Section 7), we compared two variants of the
same grammar against each other; the very ambiguous grammar Γ2 and its
factored variant Γ∗

2. This is a well-known optimization [10] and the factored
grammar indeed performs much better. It parses b128 in the same time it
takes to parse b64 with the original grammar. This kind of grammar rewriting
seems to fit very well with the self-optimizing AST interpreter approach
of Truffle [15]. Our performance study suggests, that even implementing
only this one optimization sets off the performance overhead that Truffle
incurs for some grammars. In the future, we would like to explore this kind
of grammar optimization. There are some interesting questions in particular
with regard to performing them just-in-time and on a possibly changing
grammar.

If an optimization requires extensive static analysis, is it worth it? We
already decided to not do parse table generation because the ahead-of-time
costs are too great. Maybe it is possible to do the analysis for only a part of
the grammar, the part that is heavily exercised by the input file. This is the
kind of setting in which a just-in-time compiler can outshine an ahead-of-
time compiler.

The simple inline cache optimization is guarded against changes to
single nonterminals. How do grammar optimizations react to changes of
the grammar? We still aim to keep as much of the parser as possible and
only change the parts that depend on the changed parts of the grammar.
However, changes to a single nonterminal may affect static analysis results
for the whole grammar, FIRST sets are an example.

Our Truffle-based GLL implementation does not perform nearly as well
as our Truffle-based simple recursive descent recognizer, even compared to
their respective peers. We suspect this is because the control flow in GLL is
largely opaque for Truffle. The problem seems to be the trampoline which
acts as a scheduler for parsing processes. In Section 5 we mention possibly
analyzing the grammar to recover static information about the control flow
that we could then encode in the AST and thereby make available to Truffle.
Perhaps Truffle could be extended to better handle this kind of control
flow instead. As we see it, the situation in GLL is very similar to what
a programming language with cooperatively scheduled green threads or
coroutines would need. Many programming languages, Erlang, Go, and
Concurrent Haskell come to mind immediately, offer a more lightweight
concurrent programming facility than operating system-level threads. They
include their own scheduler that manages threads of execution, like the
trampoline in GLL. It seems that implementing such a language using
Truffle would require some additional support from Truffle. If this should
ever happen, we hope we could adapt the Truffle-based GLL accordingly.

35

Our second study suggests that the Truffle-based GLL implementation
is barely competitive with another GLL grammar interpreter. The first study
however suggests that a Truffle-based grammar interpreter can outperform
a handwritten recognizer. Granted, the recognized class of languages (LL(0))
is limited. We would like to explore whether just-in-time compiled parsers
for other language classes do equally well. Control flow seems to be an issue,
but GLL and LL(0) are close to the extremes in either direction. There may
be languages in between that still benefit from a Truffle-based interpreter.
Perhaps a regular expression engine could do well when written with Truffle.
The Linux kernel includes a just-in-time compiler for firewall rules that
compiles to x86 machine code. We do not know what kind of language
class those correspond to but Truffle might be suited for similar applications.
Probably in user space code, not kernel code, though.

We use a very simple model of changing grammars. In our setting, a
grammar only changes between parsing entire sentences. There is work on
adaptive grammars that change during parsing of a single sentence (see also
below). If we manage to address the problems in the GLL implementation,
it would be interesting to explore whether it is possible to adapt it to other
models of grammar change.

9 Related Work

We are certainly not the first to consider parsing as grammar interpretation.
Parser generation is commonly used as an example in work on partial
evaluation [9]. The use of Truffle for compiling parsers, however, is largely
unexplored territory. Chris Seaton, who now works on Truffle, used to
work on an extensible programming language called Katahdin [11]. It uses a
extended parsing expression grammar algorithm for parsing. In the original
implementation, the parser is just-in-time compiled by generating .NET
bytecode which is then compiled to machine code by the .NET runtime.
Seaton later attempted to reimplement the parser using Truffle, but he
“didn’t get far enough to measure any performance” [12].

Nowadays, people say a programming language has a context-free gram-
mar, but in fact, people impose additional restrictions. For example, we
parse any identifier, not only those that are in scope. The compiler or inter-
preter only checks that variables are bound later, after parsing is already
done. The ApeseLanguage uses a dynamic parser called ZZParser [1]. It allows
grammar rules to change the grammar when being parsed. Cabasino et. al.
describe how they make the variable declaration rule extend the grammar
to include a rule that allows to parse the variable that was just declared.
Because there are different syntactic sorts for different types, the parser
even does the type checking for them. Most of this kind of work seems to
have been done in the 80s and 90s and research on formal languages has

36

been rather dormant since then, unfortunately. Christiansen uses the term
adaptive grammars in a survey [2] that discusses the goals and limitations.
The underlying motivation is to describe more of the syntax of a language
in its grammar. Christiansen further shows, that the same mechanism can
be used to syntactically extend the language. The example he uses is a new
data type for complex numbers. It includes syntax to access the imaginary
and real parts of a complex number. Interestingly, this new syntax interacts
with the existing syntax. The programmer can use the real or imaginary part
of a complex number wherever a real number is expected. This is remark-
ably similar to some of the simpler language extensions in SugarJ [4]. The
ApeseLanguage allows programmers to define their own operators using
this mechanism. It is not clear, however, whether the same technique can be
applied to cover the full extent of a sugar library’s capabilities.

Heering et. al. [8] start within roughly the same setting. They attempt
to reduce the overhead of parser generation for frequently changing gram-
mars in an ASF/SDF integrated development environment. In some ways,
ASF/SDF is a predecessor to SugarJ, and the challenges for a parser are
similar. They design a lazy, incremental parser generator. Lazy means
that the parser is only constructed when needed and only as far as needed.
No code is generated for unused nonterminals, for example. Incremental
means that changing the grammar only changes those parts of the parser
that correspond to the changed parts of the grammar. Our decision to guard
against grammar changes on the level of individual nonterminal definitions
and our cache invalidation strategy mirrors Heering’s model of incremental
change. This may be inherent in our similar model of grammar change,
namely one top-level declaration at a time, unlike the work on adaptive
grammars, where the scope of grammar changes has to reflect the scope of
variable bindings. While they solve a very similar problem, the technical
realization that Heering et.al. offer is quite different from ours. They use a
table driven LR parser and lazily generate the parse table. We use Truffle to
just-in-time partially evaluate a grammar interpreter. Their solution seems
to be good and we wonder why this has not been adopted for SGLR, the
Scannerless GLR parser that is used by SugarJ, Stratego/XT, the ASF+SDF
meta-environment, and others, to parse according to SDF grammars.

10 Conclusions

We show that Truffle can be used to implement parsers. We implemented
Truffle-based, just-in-time compiling grammar interpreters for simple re-
cursive descent recognizers of LL(0) languages and context-free language
parsers using the GLL algorithm. Exploratory performance studies suggest
that the simple recognizers could actually outperform handwritten recog-
nizers. The Truffle-based GLL implementation is slower than the original

37

grammar interpreter. However, the slowdown is well below an order of
magnitude.

The GLL parser is not yet ready for use in SugarJ. We present some
evidence that with some effort on grammar optimization it might be in
the future. Truffle-based grammar interpreters for other language classes
might already be competitive with handwritten solutions. If you have a
performance sensitive problem that might conceivably formulated as an
interpreter, we suggest you look at Truffle first.

Acknowledgments

I would like to thank the helpful people on the Truffle mailing list,
especially Christian Humer and Chris Seaton. Prof. Ostermann made
it possible for me to attend SPLASH’13 where Sebastian Erdweg made
me aware of Truffle. I owe much to my supervisors Tillmann Rendel
and Paolo Giarrusso for their help and helpful discussions, with and
about Scalameter, GLL, partial evaluation, and personal motivation
crises. Last but not least, thanks to Martin Salzer for counseling on
statistical methods.

References

[1] S. Cabasino, Pier S. Paolucci, and G. M. Todesco. Dynamic parsers and
evolving grammars. SIGPLAN Not., 27(11):39–48, November 1992.

[2] Henning Christiansen. A survey of adaptable grammars. ACM SIG-
PLAN Notices, 25:35–44, 1990.

[3] Sebastian Erdweg, Lennart C. L. Kats, Tillmann Rendel, Christian
Kästner, Klaus Ostermann, and Eelco Visser. Growing a language
environment with editor libraries. In Proceedings of Conference on Gener-
ative Programming and Component Engineering (GPCE), pages 167–176.
ACM, 2011.

[4] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Os-
termann. Sugarj: Library-based syntactic language extensibility. In
Proceedings of Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 391–406. ACM, 2011.

[5] Stefan Fehrenbach, Sebastian Erdweg, and Klaus Ostermann. Software
evolution to domain-specific languages. In Software Language Engineer-
ing, volume 8225 of Lecture Notes in Computer Science, pages 96–116.
Springer International Publishing, 2013.

38

[6] Yoshihiko Futamura. Partial evaluation of computation process - an
approach to a compiler-compiler. Systems, Computers, Controls, 2:45–50,
1999.

[7] Andy Georges, Dries Buytaert, and Lieven Eeckhout. Statistically
rigorous Java performance evaluation. In Proceedings of the 22Nd Annual
ACM SIGPLAN Conference on Object-oriented Programming Systems and
Applications, OOPSLA ’07, pages 57–76, New York, NY, USA, 2007.
ACM.

[8] J. Heering, P. Klint, and J. Rekers. Incremental generation of parsers.
In Proceedings of the ACM SIGPLAN 1989 Conference on Programming
Language Design and Implementation, PLDI ’89, pages 179–191, New
York, NY, USA, 1989. ACM.

[9] Neil D. Jones. An introduction to partial evaluation. ACM Comput.
Surv., 28(3):480–503, September 1996.

[10] Elizabeth Scott and Adrian Johnstone. GLL parsing. Electronic Notes in
Theoretical Computer Science (ENTCS), 253(7):177–189, September 2010.

[11] Chris Seaton. A programming language where the syntax and se-
mantics are mutable at runtime. Master’s thesis, University of Bristol,
2007.

[12] Chris Seaton. Message to the Truffle mailing list. http://mail.openjdk.
java.net/pipermail/graal-dev/2014-July/002393.html, July 2014.

[13] Masaru Tomita. Efficient Parsing for Natural Language: A Fast Algorithm
for Practical Systems. Kluwer Academic Publishers, Norwell, MA, USA,
1985.

[14] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler,
Gilles Duboscq, Christian Humer, Gregor Richards, Doug Simon, and
Mario Wolczko. One VM to rule them all. In Proceedings of the 2013 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on
Programming & Software, Onward! ’13, pages 187–204, New York, NY,
USA, 2013. ACM.

[15] Thomas Würthinger, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Doug Simon, and Christian Wimmer. Self-optimizing AST interpreters.
In Proceedings of the 8th Symposium on Dynamic Languages, DLS ’12,
pages 73–82, New York, NY, USA, 2012. ACM.

39

http://mail.openjdk.java.net/pipermail/graal-dev/2014-July/002393.html
http://mail.openjdk.java.net/pipermail/graal-dev/2014-July/002393.html

	Introduction
	Background: Recursive Descent Recognizers
	Background: Interpreting Grammars
	Just-in-time Compilation of a Grammar Interpreter with Truffle
	Generalized LL Parsing with Truffle
	Study 1: Recursive Descent Recognizers
	Goals
	Setup
	Data
	Interpretation
	Threats to Validity

	Study 2: Generalized LL Parsing
	Goals
	Setup
	Data
	Interpretation
	Threats to Validity

	Discussion
	Related Work
	Conclusions

