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Abstract

Language-oriented design embraces the use of language-based abstrac-
tions to improve understandability, extensibility, and maintainability of
code. Most existing applications are not designed and implemented in a
language-oriented way. The use of domain-specific language extensions
could improve them in many regards but rewriting them from scratch is
far too tedious. With SugarJ you can incrementally and independently in-
troduce language-oriented design techniques to those parts of your legacy
code that benefit the most from them. The result is a modernised code base
that is less likely to contain bugs, and easier to extend and maintain.
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1. Introduction

For some years now, researchers and practitioners propose new ways to
design programs with a focus on one fundamental constituent of every
software, its programming language. Terminology and exact approaches
differ, so we will use language-oriented design throughout this thesis to mean
a union of programming techniques and design principles that focus on
programming languages. Mainly, the use of domain-specific languages,
language-oriented programming [17] as described by M. P. Ward, and the
idea of growing a language [13] to meet our needs that has been brilliantly
articulated by Guy L. Steele Jr.

Ward’s approach, in broad strokes, is to write a program neither bottom-
up nor top-down but middle-out by first designing a domain-specific pro-
gramming language tailored to the problem at hand, implementing this
language, and writing the actual application in this new language. The main
idea behind growing a language is not to start from scratch but extend a
given general-purpose language with domain-specific features.

Language-oriented design has many benefits. Appropriate use of lan-
guages increases developer productivity because languages raise the level
of abstraction, separating domain concerns from their implementation. Well
designed domain-specific languages encapsulate domain knowledge and
are easy to use by presenting domain concepts in domain syntax. This
increased clarity improves long-term maintainability and extensibility. Do-
main abstraction and a single implementation of domain concepts opens up
opportunities for domain-specific analyses for error reporting, consistency
and static safety, and optimisations [14].

Currently, for large parts of the software industry, the programming lan-
guage of choice is Java and with it, almost invariably, comes object-oriented
programming. Large and complex software was built in this style, which
indisputably shows that object-oriented programming is practical. As the
programs grow larger, however, we start to see scalability problems with
object-oriented design. Sergey Dmitriev [6] makes the case that most of these
problems can be traced back to a mismatch between domain concepts and
their model in a general-purpose object-oriented programming language by
means of classes, objects, and methods, and their runtime behaviour. Map-
ping domain concepts to the use of a class library is a considerable mental
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effort that slows development. This affects maintenance even more, as there
is an additional, reverse, mapping involved. To correct a bug, a program-
mer has to translate code from the general purpose language to her mental
model of domain concepts, find a solution in terms of domain concepts, and
translate the solution back to code. The use of domain-specific languages
with concrete syntax narrows the representational gap and thereby improves
understandability, extensibility, and maintainability.

Figure 1.1: Total cost of ownership over the software life-cycle by design
methodology. Illustration by Paul Hudak [10]

The most discussed disadvantage of language-oriented design is the
start-up costs, which are usually higher compared to a more conventional
approach. Paul Hudak illustrates this nicely using a graph that is replicated
in Figure 1.1.

Since large applications benefit the most from language-oriented design,
it is unfortunate that existing literature does not address large legacy code
bases. Instead, the focus is new design patterns, illustrated using small code
samples that are easily written from scratch. This precludes widespread
adoption in the software industry because rewriting an application from
scratch that, because of its size, reaches the bounds of what is reasonably
maintainable using object-oriented programming, is a huge undertaking
promising little immediate benefit.

With this thesis, we aim to provide a way to bring legacy code bases
from conventional object-oriented Java to a more language-oriented design.
We explicitly avoid rewriting large amounts of code or changing overall
architecture. Instead, we propose to incrementally introduce language-
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oriented design to an existing application on demand.
The foundation of our incremental introduction of language-oriented

design is libraries. Libraries can be developed independently and are flexible
in their application, multiple libraries can be used jointly or independently,
and in large to small sections of code. Furthermore, libraries are already
fully accepted by the industry.

Paul Hudak [10] showed that libraries can be used to embed domain-
specific languages. These embedded domain-specific languages are, how-
ever, host language libraries, and by relying heavily on host language syntax
and semantics, sacrifice the benefits of domain syntax and analyses.

We decided to use SugarJ [8], a language based on Java that is syntac-
tically extensible through sugar libraries. Sugar libraries provide domain-
specific language extensions by extending Java’s syntax and defining the
extension’s semantics through a translation to Java. Additionally, SugarJ
provides means to extend the editing environment and implement domain-
specific semantic code analyses.

The process we propose for retrofitting a legacy code base with language-
oriented design is a four-step procedure that can be iterated as often as the
resulting benefits out-weight the costs:

1. Identify one particular problem or domain, a source of confusion,
verbosity, or likely mistakes.

2. Design a language-based abstraction for this domain.

3. Write a sugar library that extends Java with this language-based ab-
straction.

4. Import the library and locally rewrite problematic code employing the
new abstraction to avoid the problem and to embrace the domain.

To evaluate our process, we applied this retrofitting of language-oriented
design to the Java Pet Store, which “is the reference application for build-
ing Ajax web applications on Java Enterprise Edition 5 platform”1 with
encouraging results:

• We implemented several immediately reusable sugar libraries and
demonstrate (in Section 3) that their application improves several
aspects of the Java Pet Store code, specifically:

– We eliminate boilerplate code and improve code readability by
capturing common code patterns in sugar libraries.

– With SugarJ we bring more static safety to existing code. In par-
ticular, SugarJ provides syntactic safety for parts of programs in
embedded languages and enables domain-specific static analyses.

1http://java.sun.com/developer/releases/petstore/, accessed 17 November 2011
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– We improve the editing experience when using embedded lan-
guages, by providing IDE support like content completion, syntax
colouring, and domain-specific edit-time error reporting.

• We compare our use of SugarJ with other approaches and come to the
conclusion that, only SugarJ’s particular feature set, independent but
composable language libraries, offers the necessary flexibility.

• We demonstrate that self-applicability is not only theoretically desir-
able but indeed very useful in practice. In this case it enabled us to
reuse semi-formal language specification as actual code.

• Overall, we show that one can indeed use SugarJ to incrementally
bring the benefits of language-oriented design to an existing legacy
code base while the application remains production ready over the
entire process.
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2. Incremental Introduction of
Language-oriented Design

In this section we describe the process we propose for introducing language-
oriented design techniques to a traditionally designed, object-oriented,
legacy code base.

We use the Java Pet Store 2.0 Reference Application as our example
legacy code base. The Java Pet Store – written by Sun Microsystems to
demonstrate the Java Enterprise Edition 5 – is a web application for selling
pets.

2.1 Step one: Identify one particular problem or do-
main

Figure 2.1: Java Pet Store XML code

Exemplary, we identify the domain of XML document creation in the
Java Pet Store as worthy of improvement.

The Java Pet Store uses XML to interchange data between client and
server. Figure 2.1 shows server-side code for serialising a pet to XML.

Encoding domain-specific languages as strings has several drawbacks.
To the compiler all strings are arbitrary data so there is no syntactic safety.
The Java Pet Store does not employ validation of XML documents before
sending them to the client, so any errors manifest far away from their
origin. In general, string encoding requires the escaping of quotes. A future
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extension of the Java Pet Store’s data interchange format might require XML
attributes and expose this problem.

There is most likely more than one area of potential improvement in
any legacy code base. Rewriting from scratch to address all problems at
once is too expensive and time consuming and according to Fred Brooks’
second-system effect [3] not likely to succeed. Because our approach is built
around composable libraries, we can address problems in the code base one
at a time. Sugar libraries are also largely independent so we are at liberty to
chose the domain that promises the largest cost-benefit ratio first.

2.2 Step two: Design a language-based abstraction

In the previous step we identified two areas of improvement. We would like
to avoid the syntactic overhead of Java strings and StringBuffer.append,
and add static syntax checking that alerts us in case of improperly nested
elements and similar syntactic mistakes.

The most natural syntax for dealing with XML data is XML’s syntax.
Ideally, a function that returns a hello world XML document should be as
easy as the following:

public String greet() {
return <hello>world</hello>;

}

We also need access to Java for generating dynamic documents, to greet
a user with his name, for example. We address this requirement by treating
code in between ${ and } as Java and include the result of its evaluation in
the XML document.

public String greet(User user) {
return <hello>${ user.name }</hello>;

}

The return types in the above demonstration code expresses a second
design choice, the semantics. In SugarJ, embedded languages derive their
semantics from their translation to Java code. In case of the XML sugar
library, we decided to translate literal XML to string expressions. This choice
reduces the amount of rewriting needed in Step four.

The existing Java Pet Store code relies on strings and strongly suggests
the semantics of this XML embedding, and the language embedded itself
already has a standardised syntax. In general, the design of domain-specific
languages tends to be more involved.
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2.3 Step three: Write a sugar library

The next step is implementing the language extension designed in the
previous step as a sugar library. For now it is sufficient to know that a
parser and a subsequent semantic analysis report syntactic errors, and the
XML greeting code from before is translated to this Java code:

public String greet(User user) {
return String.format(”<hello>%s</hello>”, user.name);

}

An introduction to SugarJ can be found in Section 3 and the XML sugar
library’s implementation is discussed in more detail in Section 5.

2.4 Step four: Apply

The last step is to use the sugar library developed in Step three and designed
in Step two, to improve the code that is concerned with the domain chosen
in Step one.

Figure 2.2 shows the same method as Figure 2.1 but adapted to use the
XML sugar library and thereby avoiding all deficiencies of string encoded
XML.

Figure 2.2: Method from Figure 2.1 using the XML sugar library

The XML sugar library was carefully designed to minimise the amount
of rewriting of existing code. Especially the choice of translating to string-
typed expressions keeps rewriting effort localised because no callers need
to be adapted.

One important point for application in practice is that newly adapted
and legacy code can coexist. There is no need to immediately adapt all
eligible code. Rewriting can be deferred problem-free to an opportune
moment, e.g. a pending extension involving related functionality.

2.5 If not perfect, repeat

At this point, we have a production ready, modified Java Pet Store code base
that is clearer, safer, and more aesthetically pleasing than the original code.
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The XML sugar library does compile time syntax checking, and the concrete
XML syntax used is clearer and more readable than the string encoding that
has been used before.

As we mentioned in Step one, the XML domain was likely not the only
potential beneficiary of language-oriented design. Because sugar libraries
are composable, it is possible to repeat these four steps, incrementally ap-
proaching a language-oriented design, or to stop as soon as a cost-benefit
ratio limit is reached.
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3. Background on SugarJ

This section provides background information on SugarJ, SDF and Stratego,
the means of implementing the language-based abstractions we design and
use in the previously discussed process of retrofitting language-oriented
design. Feel free to skip ahead if you are familiar with SugarJ already.

SugarJ is a syntactically extensible language with powerful meta pro-
gramming facilities. Seen from a pragmatic implementation perspective, it
is a preprocessor that allows programmers to augment the general-purpose
language Java with syntactic extensions called sugar libraries, similar to
how they augment the standard class library with third party class libraries.

To illustrate the use and development of sugar libraries, we demonstrate
the use and design of one of the most basic language extensions. The pair
sugar library [8] allows programmers to use the familiar syntax for pairs
that is used in Mathematics, in Java.

3.1 Using a sugar library

The use of the pair sugar library might look like in Listing 3.1, below. The
first line imports the sugar library, just like any other library. From this point
on, the program text is parsed with a modified grammar, that allows pair
types and pair values to be written in the familiar mathematical notation.

import pair.Sugar;

public class Test {
private (String, Integer) p = (”Answer”, 42);

}

Listing 3.1: Use of the pair sugar library in a file named Test.sugj

Using an existing sugar library is easy: (1) place the sugar library on the
classpath, (2) import the sugar library and use its features to improve code,
(3) rename the former .java file to a .sugj file, and (4) compile the file with
sugarjc instead of javac.
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3.2 Writing a sugar library

There are three aspects to every programming language: syntax, semantics
and pragmatics. This naturally extends to sugar libraries.

3.2.1 Pair syntax

SugarJ uses the SDF syntax definition formalism [9] to describe the syntax that
sugar libraries introduce.

In the case of the pair sugar library, we extend the Java syntax using the
SDF grammar shown in Listing 3.2, below.

package pair;

import org.sugarj.languages.Java;

public sugar Sugar {
context-free syntax

”(” JavaType ”,” JavaType ”)” -> JavaType {cons(”PType”)}
”(” JavaExpr ”,” JavaExpr ”)” -> JavaExpr {cons(”PExpr”)}

}

Listing 3.2: Pair syntax

Like traditional class libraries, sugar libraries are organised in packages
and the pair sugar library is in package pair. The import statement allows
access to the Java syntax this sugar library extends. A sugar library is
defined syntactically similar to a class, with sugar replacing class, so the
name of this sugar library is Sugar, fully qualified: pair.Sugar.

context-free syntax marks the beginning of the syntax definition.
Sugar libraries may use any context-free syntax. Productions are, confus-
ingly, written “the wrong way ’round”. The single non-terminal is written
to the right-hand side of the arrow ->, followed by annotations enclosed in
curly braces. The left hand side denotes what sequence of terminals and
non-terminals the non-terminal on the right hand side may be expanded to.

The first line of the above syntax definition would be written like the
following in the probably more familiar Backus-Naur Form:
JavaType ::= ”(” JavaType ”,” JavaType ”)”

Conceptually, the pair sugar library’s syntax allows its users to write
two Java types, enclosed by parentheses and separated by a comma, in the
place of one, the same goes for Java expressions.

The annotation {cons("PType")} causes the parser to introduce a node
labeled ”PType” to the abstract syntax tree when using this particular pro-
duction.
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3.2.2 Pair desugaring

Languages defined in sugar libraries derive their semantics from desugarings.
Desugarings are transformations of the abstract syntax tree produced by
the parser. As such, they are a mapping from the syntactic constructs of
the embedded language to constructs in the host language, most often
Java. Desugarings to more general SugarJ code, that is grammar definitions,
transformations, and code that uses other sugar libraries, are also possible.
In the end, the semantics of a language in a sugar library is the semantics of
the desugared code.

We would like the code from Listing 3.1, to desugar to the following Java
code:

public class Test {
private pair.Pair<String, Integer> p =

pair.Pair.create(”Answer”, 42);
}

Listing 3.3: Code from Listing 3.2, desugared

Speaking in concrete syntax, we want to transform the type declaration
(T1, T2) to pair.Pair<T1, T2>, similarly we need to transform the pair
expression (E1, E2) to pair.Pair.create(E1, E2), for every T1, T2, E1, E2.

The desugarings block in a sugar library definition declares the names of
the transformation rules the SugarJ compiler will apply exhaustively to the
syntax tree to achieve the desugaring result. The pair sugar library declares
two desugaring rules, one for types and one for expressions:

...
public sugar Sugar {
...

desugarings
desugar-pair-type
desugar-pair-expr

}

SugarJ transformations are written in Stratego [15], a language designed
for program transformation. Stratego uses two kinds of “functions” called
rules and strategies. Rules use pattern matching over the abstract syntax tree
and are usually used to transform one specific node of an abstract syntax
tree to another. The rules that define the pair desugaring are shown below:
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...
public sugar Sugar {
...

rules
desugar-pair-type :
PType(t1, t2) -> |[ pair.Pair<˜t1, ˜t2> ]|

desugar-pair-expr :
PExpr(e1, e2) -> |[ pair.Pair.create(˜e1, ˜e2) ]|

}

On the left hand side of the arrow -> is the pattern a rule matches on, the
right hand side is a new abstract syntax tree. desugar-pair-type can only
be applied to a node of type PType with two children, which are bound to
variables t1 and t2. The brackets |[ and ]| that surround the right hand
side expressions in the above code allow us to use concrete Java syntax to
describe the result of applying this rule. Without this, desugar-pair-type
would be a little more verbose but it gives an impression of what Java
abstract syntax trees look like:

desugar-pair-type:
PType(t1, t2) ->
ClassOrInterfaceType(
TypeName(PackageOrTypeName(Id("pair")), Id("Pair")),

Some(TypeArgs([t1, t2])))

We mentioned Stratego strategies. Strategies are more general than
rules, and in fact rules are special-purpose strategies with domain-specific
syntax. Strategies are mostly used like higher-order functions in functional
programming languages. There are strategies with familiar functions like
map and fold to map a rule over a list, or to aggregate a list. There are
also strategies like bottom-up and top-down that define tree traversals in a
generic way.

Stratego’s more advanced features make it very powerful tool in its
domain of program transformation. However, it can also be used to great
effect in a very restricted form by anyone who ever programmed in any
functional language using only pattern matching and simple, higher-order
function-like strategies.
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3.3 Editor services

Through editor libraries, SugarJ provides access to the editing environment
[7]. We used this functionality only sparingly for the JPQL sugar library.1

Sugarclipse, the SugarJ Eclipse plugin that implements the editor ser-
vices, is work in progress but its features already include syntax highlighting,
code folding, cross references, edit-time error reporting, outline view, and
semantic code completion.

Editor services are based on decorated abstract syntax trees and are
therefore very robust. Especially in the presence of nested embedded lan-
guages this approach excels because there is no need for additional code to
support different combinations of sugar libraries.

Figure 3.1: Sugarclipse, the SugarJ IDE (source: sugarj.org)

1see Section 5
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4. Retrofitting
Language-oriented Design:
A Case Study

To evaluate the process for incrementally retrofitting a legacy code base with
language-oriented design we proposed in Section 2, we applied it to Java
Pet Store.

We identified several aspects of the Java Pet Store code that pose prob-
lems for maintenance and future extension and developed sugar libraries
that address these concerns. In this section, we showcase the application
of these libraries to the Java Pet Store and therby demonstrate, how sugar
libraries improve conciseness, editing experience, and static safety. The
sugar libraries’ technical realisations are discussed in Section 5.

4.1 JavaBeans style properties

The JavaBeans standard is a coding convention that enables uniform object
creation and access to fields, called properties in this context. JavaBeans are
ordinary classes that are Serializable, provide a nullary constructor, and
provide getters and setters for their fields that follow a common naming
scheme.

The original goal of the JavaBeans standard was to build visual tools
to create and modify GUI components, like buttons and labels. Naming
accessors and mutators according to the JavaBeans standard, using the
prefixes get or is, and set, respectively, is widely adopted in Java code, not
only among GUI toolkits.

The Java Pet Store uses classes with JavaBean style accessors for its
business logic entities, some of which have quite a few properties, resulting
in correspondingly many lines of boilerplate code for accessors. The class
Item, for example, represents a pet, and consists of 13 fields like ID and
description. The resulting boilerplate fills many-a-page; the five business
methods that are actually interesting, are well hidden in between.
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4.1.1 Language support for properties

Many programming languages provide special support for properties, that
reduces the amount of boilerplate code needed.

Java

public class Person {
private String name;
private boolean adult;

public Person() {}

public Person(String name,
boolean adult) {

this.name = name;
this.adult = adult;

}

public String getName() {
return this.name;

}

public void
setName(String name) {

this.name = name;
}

public boolean isAdult() {
return this.adult;

}
}

C#

public class Person {
public string Name {get; set;}
public bool Adult {get;

private set;}

public Person() {}

public Person(string name,
bool adult) {

set_Name(name);
set_Adult(adult);

}
}

Common Lisp

(defclass person ()
((name :initarg :name

:accessor person-name)
(adult :initarg :adult

:reader person-adult)))

Listing 4.1: A person modelled in different programming languages

Consider an exemplary person entity, that has two properties: a name,
and whether the person is an adult; the latter property shall be read-only.

The code in Listing 4.1 shows, how we would model a person in Java,
Common Lisp, and C#. Java has no support for properties, so we use
ordinary methods for getters and setters. In both Java and C#, we also
declare two constructors, one that takes no arguments, as required by the
JavaBeans standard, and one that initialises the fields with its parameters. In
C# we do not need to write getter and setter methods, the shorthand syntax
{get; set;}makes the compiler generate those automatically. In Common
Lisp we can even omit the constructor implementation, the :initarg option
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makes the generated constructor accept an additional optional argument for
initialisation.

4.1.2 The accessors sugar library

Since the Java Pet Store’s business entities make heavy use of JavaBeans style
properties, we would like our language to provide us with more support.

For retrofitting Java with accessors support through a sugar library, we
took inspiration from both C# and Common Lisp. The syntax is adapted
from C#’s, since it fits nicely with Java syntax. From Common Lisp, we
adapted the idea of generating a constructor to initialise fields.

import sugar.Accessors;

public class Person {
private boolean adult {con; get};
private String name {con; get; set};

public Person() {}
}

Listing 4.2: Person using the accessors sugar library

Listing 4.2 shows the example class Person from before, this time using
the accessors sugar library. After importing the sugar library in the first line,
a field declaration may be followed by a combination of one or more of get,
set and con, indicating whether getter and setter should be created, and
whether this field should be part of the initialising constructor. The code
resulting from desugaring, is the same as the Java code in Listing 4.1.

4.1.3 The accessors sugar library applied to the Java Pet Store

The Item class is a typical example of a business logic entity in the Java Pet
Store that follows the JavaBeans conventions. Most of its code is boilerplate;
there are 9 getters and 13 setters, which just get or set without any vali-
dation or computation, as well as two constructors, one nullary and one
10-ary, which initialise an Item with nulled fields, and the constructor’s ar-
guments’ values, respectively. In addition, there are four getters with special
annotations for persistence, and five methods that actually do something
interesting.

The five business methods fill one screen page, the overall size is about
five pages. We used the accessors sugar library to generate the 22 accessors
and the initialising constructor from the field declarations in Figure 4.3.

The result is only two pages of code, one of which is the untouched busi-
ness methods, the other is comprised of required imports, field declarations,
and getters specifically annotated for persistence purposes.
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private String itemID {set};
private String productID, name, description,

imageURL, imageThumbURL {con; get; set};
private BigDecimal price {con; get; set};
private Address address {con; set};
private SellerContactInfo contactInfo {con; set};
private int totalScore, numberOfVotes {con; get; set};
private int disabled {get; set};
private Collection<Tag> tags = new Vector<Tag>();

Listing 4.3: Field declarations with accessor annotations for the class Item

To summarise, the accessors sugar library captures a pattern commonly
found in Java code. By reducing the amount of boilerplate code, it helps the
programmer focus on code that is actually important.

4.2 XML

As a web application, the Java Pet Store naturally deals with XML data. The
largest part is mostly static HTML, hidden in Java Server Pages. SugarJ
support for Java Server Pages is an ongoing project, but it is not discussed
here any further.

In addition to its graphical user interface that relies on HTML, the Java
Pet Store also uses XML as one of its data interchange formats for communi-
cation between the user interface, running in the browser, and the back end,
running atop an application server.

The code in Figure 4.1 for example, returns an XML representation of an
item in the Java Pet Store.

Figure 4.1: Use of XML strings in the Java Pet Store

4.2.1 Language support for XML

This style of language embedding, through strings, is prone to errors. This
is especially ironic considering, that XML was designed for interoperability
purposes, and with a focus on static validation.
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A real world web application likely needs to interface with external
sources, or consumers, of XML data. As features are added and interchange
formats change, the application’s XML emitting code has to be adapted. To
avoid mistakes, we would like our language to do as much static checking
as possible; to help programmers, editor support is desirable.

Most programming languages have libraries to deal with XML. XML
libraries prevent syntactic mistakes, some even offer validation. However,
traditional, class based libraries, like JDOM for Java, have one inherent flaw:
their syntax is the syntax of objects, not XML.

Scala has syntactic support for XML built-in and checks, at least, for
basic well-formedness like proper nesting. A sugar library to retrofit Java
with XML support, should offer at least this much.

In the spirit of code reuse,1 we adapted an existing XML sugar library
[7, 8] to desugar literal XML to a string representation. This approach
combines minimal involvement in sugar library development, with as little
adaption of legacy code in the Java Pet Store as possible. In spite of this
minimum in effort, it still offers many benefits, like static checking for well-
formed tags, general syntactic safety, editor support in the form of syntax
highlighting, code folding, and integration with Eclipse’s overview feature.

4.2.2 The XML sugar library

After importing the sugar library, the handleItem method from Figure 4.1,
can be rewritten as shown in Figure 4.2.

Figure 4.2: Method from figure 4.1 using the XML sugar library with string
desugaring

The Java Pet Store, as it is today, uses only a small subset of XML func-
tionality. In the future, it will likely be required to be extended with more
advanced use of XML.2

We see the employment of the XML sugar library, in this basic capacity,
as a first step of a future extension of the Java Pet Store. The static safety
it provides today, protects against malformed XML and basic syntactic

1read “avoiding work”
2The Java Pet Store will most likely never change again, but remember, it is a model for a

real application.
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errors, and thereby builds a foundation for easy and safe extension, like unit
tests do. Validation against predefined schemata promises an even greater
increase in static safety, when needed, in the future.

4.3 Java Persistence Query Language

The Java Persistence API is a framework for managing relational data in
Java applications. It is comparable to the well known object-relational
mapping library Hibernate,3 but the mapping is more direct, as usually
every persistence entity corresponds closely to a single row in a single table.

The Java Persistence API includes a query language, named Java Persis-
tence Query Language (JPQL),4 that is syntactically and semantically closely
related to SQL, but operates on persistence entities instead of relational
database tables.

The syntax and semantics of JPQL are defined in JSR 220 [12], an informal
overview is part of the Java 5 EE Tutorial [5]. To follow the code samples
below, it suffices to know that to retrieve persisted entities, a programmer
creates a Query object by passing a JPQL query string to the factory method
createQuery, that is provided by an EntityManager. Also, queries may
contain named placeholders, called query parameters, prefixed with a colon,
that can be instantiated with the setParameter method.

The Java Pet Store uses the Java Persistence API to persist its business
entities, like pets, tags, categories and addresses. The Java Persistence Query
Language is used to retrieve entities, possibly filtered for some property,
e.g., to present a user with a list of all panda bear guys. See Listing 4.4 for a
typical, albeit short, query from the Java Pet Store code.

public List<Item>
getItemsVLH(String pID, int start, int chunkSize) {

EntityManager em = emf.createEntityManager();
Query query = em.createQuery(

”SELECT i FROM Item i WHERE i.productID = :pID AND i.disabled
= 0”);

List<Item> items = query.setParameter(”pID”,pID)
.setFirstResult(start).setMaxResults(chunkSize)
.getResultList();

em.close();
return items;

}

Listing 4.4: Example JPQL query that retrieves enabled items of a certain
kind. The query parameter :pID is set at runtime using setParameter

3hibernate.org – Hibernate implements the Java Persistence API since Version 3.2
4based on the Hibernate Query Language
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4.3.1 Problems with JPQL

As briefly mentioned before, JPQL queries are embedded into Java as plain
strings. This form of embedding has some disadvantages compared to a
more direct embedding in the host language:

While editor support is not impossible, JPQL query strings could be
detected and treated differently from other strings, none is provided by any
IDE, as of today. This means, most visibly, no syntax highlighting but also
no outline view, reference resolving, code completion and similar features
programmers have come to expect from their editing environment.

String embedding is naturally constrained by the host languages strings.
Escaping of special characters over multiple language levels can become
hard to deal with.

Since Java provides no way to do arbitrary compile time computation,
any static analysis and error checking for string embedded languages is
impossible. For the Java Pet Store, we therefore need to do a full compile,
deploy to the application server, and run-cycle, to find a missing comma or
a misspelled query parameter. Further static analysis is conceivable, since
the operands of JPQL queries are Java objects that belong to Java classes,
elaborate static type checking would certainly be possible, yielding great
benefits in static safety.

The JPQL sugar library developed in the context of this thesis addresses
many of these problems and requires only a minimum of changes to the
legacy code.

4.3.2 Host language integration

After importing the JPQL sugar library, JPQL queries are a syntactically first
class language extension and appear to be messages5 to an EntityManager.
There is no need for elaborate means to wrap lines, or escape literal strings
in queries.

With the JPQL sugar library, the query from Listing 4.4 can be written as
seen in Listing 4.5. The code still follows the same overall structure.

The attentive reader might have noticed, that the call to setParameter is
missing. In traditional JPQL query strings, the colon is used to mark query
parameters, to be set later. With the JPQL sugar libraries queries, it can be
thought of as an operator to change scopes; it allows access to variables
in the Java lexical environment from within a query. Besides being more
concise, this prevents premature query execution, where not all parameters
have been set, a mistake previously only discovered at runtime.

public List<Item>
getItemsVLH(String pID, int start, int chunkSize) {

5as in Smalltalk-style object-oriented programming with message passing
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EntityManager em = emf.createEntityManager();
Query query = em.SELECT i

FROM Item i
WHERE i.productID = :pID

AND i.disabled = 0;
List<Item> items = query.setFirstResult(start)
.setMaxResults(chunkSize).getResultList();

em.close();
return items;

}

Listing 4.5: Query from Figure 4.4 using the sugar library. The query is
not a string anymore and can be freely wrapped, also note the missing
setParameter

4.3.3 Editor support

Editor support, as detailed before, for string embedded domain-specific lan-
guages is hard and rarely done. A modern editing environment provides its
users not only with keyword highlighting and automatic insertion of closing
parenthesis. IDEs like Eclipse provide, for Java, generation of overviews,
code folding, context sensitive code completion, indentation support, and
reference resolving.

Figure 4.3: Eclipse default Java editor showing a JPQL query

As you can see in Figure 4.3, the JPQL query, in a section of original Java
Pet Store code displayed in the Eclipse IDE, stands out as a long string literal
coloured blue, like every other string literal independent of content. There
is absolutely no editor support for queries. We do not have any evidence
for this claim, but we are certain this query is not formatted as the author
initially imagined it to be. One explanation for the curious distribution
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of space characters at the beginning and end of lines, as well as the non-
idiomatic line break and keyword positions might be that Java disallows
string literals to be broken over multiple lines, which makes adjusting
indentation after modification difficult.

The JPQL sugar library addresses this problem and allows queries to
be laid out as their writers desire. As you can see in Figure 4.4, using the
JPQL sugar library, queries are no longer bound by the shortcomings of
Java string literals so programmers can wrap and indent as is natural for
SQL-like code, which leads to more readable code.

Figure 4.4: Same query as in Figure 4.3, using the JPQL sugar library

This screenshot also shows basic syntax highlighting. JPQL keywords,
e.g., SELECT, are coloured like Java keywords and input variables are dis-
played in an unintrusive shade of green that intensifies the visual hint that
is already provided by the colon prefix.

While syntax highlighting is certainly important, programmers have
come to expect more sophisticated support from their editing environment.
To this end, the JPQL editor library already provides basic code completion
templates, see Figure 4.5. In the future we might see extensive semantic
code completion, leveraging the Java type system to filter applicable JPQL
functions and provide likely join attribute candidates. Reference resolving,
that is linking query parameters back to their declaration, might also be a
useful future extension.

Figure 4.5: Code completion for JPQL queries
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4.3.4 Fully parsed queries

JPQL queries are parsed using a grammar based on the documentation [4]
provided by Oracle. For technical background on this see Section 5.3.

Having programs fully parsed is a vast improvement over string embed-
ding. Syntactic errors are detected at compile-time6 instead of at runtime,
where they can easily be missed, especially without an extensive test suite.
Furthermore, error reporting output from test suites, is unlikely to be as
immediate as the errors reported directly in the IDE, as seen in Figures 4.6
and 4.7. SugarJ applies error recovery parsing [11] to provide error messages
of high quality.

Figure 4.6: Misspelt WHERE. Formerly a runtime error, now highlighted in the
IDE

Figure 4.7: Missing comma between Category c and Product p with possible
correction in a tooltip

While adapting the Java Pet Store to use the JPQL sugar library, we
found what is probably a mistake in the documentation, an inconsistency
between the implementation of the Java Persistence Query Language and its
specification. According to Oracle’s documentation the following query is
syntactically incorrect, because the pattern, that follows the keyword LIKE,
is supposed to be a literal string:

SELECT p FROM Product p
WHERE p.categoryID LIKE :categoryID

The relevant production in the grammar is this one:

like_expression ::=
string_expression [NOT] LIKE pattern_value
[ESCAPE escape_character]

The documentation elaborates: “The pattern value is a string literal that
can contain wildcard characters”,7 but :categoryID is not a string literal, it
is an input variable.

6or type-time when using Sugarclipse, the SugarJ plugin for Eclipse
7http://download.oracle.com/javaee/5/tutorial/doc/bnbuf.html#bnbvg
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This particular pattern, LIKE followed by an input variable, occurs quite
often throughout the Java Pet Store. It works just fine, and there is no reason
it should not work, other than that it is undocumented behaviour.

We assume it is a mistake in the documentation, one that is easily fixed
by introducing a production to the grammar that describes a pattern value
as either a string literal or an input variable. We do not mention this to
criticise the Java Pet Store’s developers or Sun’s documentation writers. The
point is that using SugarJ, this use of undocumented behaviour was very
easy to spot and could have been avoided from the start.

4.3.5 Static checks

Most static checks for SQL queries are nearly impossible, because the
database is an external service and its layout can change from compile-
time to runtime and even in between queries. In an ideal world, we would
like the query compiler do every static check possible so that the database
management system only ever needs to report runtime errors.

As a proof of concept for static analysis, we implemented name res-
olution for identification variables.8 Identification variables are far more
important in JPQL, than their counterparts are in SQL, because fields, or
columns, are not implicitly resolved even if they are uniquely named.

In the following query, i is an identification variable:

SELECT i FROM Item i WHERE i.id = 42

Identification variables are declared in the FROM-clause and this is already
enforced by the parser because it is required in the grammar. Their proper
use, however, is a context-sensitive property which is impossible to enforce
by a context-free grammar. Nevertheless, Java programmers are used to
being alerted by their IDE, as seen in Figure 4.8, when they accidentally use
undeclared variables.

Figure 4.8: Eclipse highlighting the use of an undeclared variable

The JPQL sugar library’s editor services provide undeclared variable
detection and reporting for JPQL queries. For the sake of consistency the
visual presentation is just the same for JPQL as it is for Java, as you can see
in Figure 4.9.

In this section we demonstrated what problems can be avoided by using
sugar libraries. We captured a pattern commonly found in Java code in a

8known as tuple variables in the SQL world
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Figure 4.9: Sugarclipse highlighting the use of an undeclared identification
variable

sugar library and thereby reduced the amount of boilerplate code. For both
XML and JPQL we eliminated the shortcomings of string embedding and
provide syntactic safety as well as an improved editing experience.
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5. Technical realisation

In the previous section, we demonstrated the effects of various sugar li-
braries on the Java Pet Store, leading to leaner, clearer and safer code. In this
section we discuss the technical realisation of the sugar libraries used in the
previous section.

We describe these language extensions’ syntax definitions, highlight
interesting aspects of their desugarings, and, where applicable, discuss
pragmatic aspects, such as editor support.

5.1 Accessors

The accessors sugar library extends Java with annotations to field declara-
tions that desugar to traditional JavaBean style getters and setters. A con-
structor to initialise selected fields will also be generated when requested.

class Foo {
private int bar, baz {con; get; set};
private Boolean quux {con; get};

}

Listing 5.1: Example of a class using the accessors sugar library

5.1.1 Syntax

After having decided what syntax to use, the implementation of the syntax
in SugarJ is not much more than just writing it down.

From the minimal example in Listing 5.1 we gather that we need to
extend the way fields are declared in Java with a semicolon-separated list
of annotations. The annotations being one of con, get, and set, for a field
marked to be initialised by the constructor, or to generate a getter, or setter.

Figure 5.2 shows the syntax definition of the accessors sugar library. Line
5 is essentially a Java field declaration plus AccDecs, which are the accessors
annotations. Lines 6 to 9 define the annotations’ format. Lines 2 to 4 are
used to introduce a custom node in the syntax tree at class declaration level.
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We need this later, to get at the class’s name, which is also the name of the
constructor we need to generate.

1 context-free syntax
2 JavaClassDecHead AccClassBody -> AccClassDec

{cons(”AccClassDec”)}
3 ”{” AccClassBodyDec* ”}” -> AccClassBody

{cons(”AccClassBody”)}
4 AccFieldDec | JavaClassBodyDec -> AccClassBodyDec
5 (JavaAnno | JavaFieldMod)* JavaType {JavaVarDec ”,”}+

AccDecs ”;” -> AccFieldDec {cons(”AccFieldDec”)}
6 ”{” {AccDec ”;”}+ ”}” -> AccDecs
7 ”con” -> AccDec {cons(”AccCon”)}
8 ”get” -> AccDec {cons(”AccGet”)}
9 ”set” -> AccDec {cons(”AccSet”)}

Listing 5.2: Syntax definition of the accessors sugar library

The syntax definition is, overall, rather compact and straightforward.
This has two reasons: the amount of syntax newly introduced is quite small,
and SugarJ allows us to reuse the productions, prefixed with “Java”, defining
the original Java syntax.

5.1.2 Desugaring

Desugaring in this case, as in many cases, is a straightforward transforma-
tion from one abstract syntax tree into another.

The implementation of desugarings, especially for these macro-like ex-
tensions, can often be divided into three steps:

1. extract relevant parts of the original abstract syntax tree

2. normalise the representation

3. generate code using the normalised data.

The strategy genGetters is the entry point for getter generation, and
receives a list of method, constructor, field, and annotated field declarations
as its implicit argument. It follows the aforementioned design pattern
closely.

genGetters = filter(?AccFieldDec(_, _, _, _)) ;
mapconcat(getterTriples) ; map(getter)

Listing 5.3: Three steps to generating getters

According to the first item in the above pattern, genGetters extracts the
relevant declarations by applying a filter that matches only field declarations
with accessor annotations.
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To understand normalisation it is helpful to discuss code generation first.
The typical getter looks like this: public Type getField() { return field;
}, so for code generation we need the field’s type, name and the prefix,
which is usually “get”, but is “is” for boolean types. Let us assume that
normalisation provides us with exactly this data for every getter that is to
be generated, a triple consisting of type, name, and prefix. Code generation
just maps the rule seen in Listing 5.4 over a list of triples and thereby returns
a list of getter ASTs.

getter : (type, name, prefix) ->
MethodDec(MethodDecHead([Public()], None(), type,
Id(<conc-strings> (prefix, <upcaseFirstChar> name)),
[], None()), Block([Return(Some(ExprName(Id(name))))]))

Listing 5.4: Code generation basically returns the AST of public type
prefixName() {return name;} for given type, name, and prefix

The second step is normalisation, the glue between the filter step, which
is syntax driven, and the code generation, which is data driven. Normalisa-
tion is usually a bit more involved because it, naturally, needs to deal with
non-normalised data. The Java syntax also allows for more than one field to
be declared with the same declaration by seperating multiple field names
by commas. Those fields then share their type, modifiers, and, when using
this sugar library, their accessor annotations. Normalisation basically needs
to do three things: filter out fields that shall not receive a getter, flatten the
list of lists of fields that is a result of the multiple field syntax, and return
the appropriate getter prefix for boolean versus non boolean types.

getterTriples = ?AccFieldDec(_, type, vars, accs);
if <elem> (AccGet(), accs)
then !vars; map(\VarDec(Id(name)) ->

(type, name, <defaultPrefix> type)\)
else ![]
end

Listing 5.5: Normalisation code returns lists of (type, name, prefix) triples
that are concatenated later on

The first line of the normalisation code in Listing 5.5 binds parts of the
field declaration with accessors, namely the type, the names of the variables,
and their declared accessors. It proceeds to check whether a getter is to
be generated at all and if so, returns a list of triples containing all the data
relevant for code generation.

The appropriate prefix is determined by pattern matching on the field’s
type as seen in the code below, where <+ is ordered choice to prefer the
boolean rules over the generic rule.
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defaultPrefixBool : Boolean() -> ”is”
defaultPrefixBool : ClassOrInterfaceType(

TypeName(Id(”Boolean”))) -> ”is”
defaultPrefixOther : _ -> ”get”
defaultPrefix = defaultPrefixBool <+ defaultPrefixOther

Desugaring of actual field declarations, setters and the constructor fol-
lows the same overall pattern of extracting, normalising, and then using the
normalised data for straight forward code generation.

The accessors sugar library also features custom prefixes. In retrospect,
this appears to be a case of premature generalisation, as they are never used
in the Java Pet Store and it is not clear that we would ever want to use them,
especially since “get” is exchanged for “is” for boolean types automatically.
Custom prefixes complicate normalisation and have been omitted from this
discussion for clarity.

The entire accessors sugar library definition fits narrowly on one screen
page and could be made even more compact by making better use of Strat-
ego’s standard library. More importantly, it is very easy to understand.
Every programmer who ever used one of Erlang, F#, Haskell, some variant
of ML, Prolog, Scala or Scheme is familiar with pattern matching and the
basic higher order functions used in the implementation.

5.2 XML

The XML sugar library we used on the Java Pet Store is largely based
one written by Sebastian Erdweg[8, 7]. This original XML sugar library
is combined from several smaller independent parts: the XML syntax, an
integration of XML in Java statements, a desugaring to SAX calls, and editor
services.

The Java Pet Store does not use SAX and as one of our goals is to remain
true to the original design to minimise rewriting effort, we replace the
SAX desugaring by one that is closer to the Java Pet Store’s XML string
embedding.

5.2.1 Syntax

The fact that we desugar to string expressions, not SAX statements as in the
original, implies we change the Java integration to allow XML expressions,
instead of statements, as is the case in the original XML sugar library. SugarJ
enables us to reuse the entire Java syntax and the XML syntax defined in the
original XML sugar library by just importing them. The syntax definition
that allows XML in place of Java expressions and introduces an unquote
operation is thereby reduced to the following four lines:
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context-free syntax
Document -> JavaExpr {cons(”XMLDocument”)}
”${” JavaExpr ”}” -> JavaEscape {cons(”JavaEscape”), prefer}
JavaEscape -> Element

Listing 5.6: Integration of the XML syntax with Java

This makes the following code fragment syntactically legal:

return <item>
<id>${i.getItemID()}</id>
<cat-id>${i.getProductID()}</cat-id>
</item>;

Listing 5.7: XML document using the sugar library

5.2.2 Desugaring

The Java Pet Store in its original form uses string encoded XML documents
to respond to requests from the browser. It uses a StringBuffer to gradually
compose an XML document from interleaved XML fragments and string-
typed Java expressions.

StringBuffer sb = new StringBuffer();
sb.append(”<item>\n”);
sb.append(” <id>” + i.getItemID() + ”</id>\n”);
sb.append(” <cat−id>” + i.getProductID() + ”</cat−id>\n”);
sb.append(”</item>”);
return sb.toString();

Listing 5.8: Typical Java Pet Store code for generating XML documents

Listing 5.8 shows how XML is generated throughout the Java Pet Store.
For the XML sugar library, we chose to desugar to String.format calls, as
seen in Listing 5.9 below.

return String.format(
”<item><id>%s</id><cat−id>%s</cat−id></item>”,
i.getItemID(), i.getProductID());

Listing 5.9: XML code from Listing 5.7 desugared

This desugaring is semantically very close to the original Java Pet Store
code we would like to replace, minimising the amount of local rewriting
needed to benefit from the sugar library.

The desugaring itself is a straightforward pretty printing of the XML
AST to a string representation with every unquote replaced by the %s format
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directive, which is filled out with the arguments to format. An excerpt of
the pretty printing code is shown in Listing 5.10. This is very similar to the
desugaring for the Java Persistence Query Language.

xml-to-string = pprint <+ arglist; map(xml-to-string); concat-
strings <+ !""

pprint : Element(ElemName(QName(None(), open_name)),
attributes, body,

ElemName(QName(None(), close_name)))
-> <concat-strings> ["<", open_name, <xml-to-string>

attributes, ">", <xml-to-string> body, "</",
close_name, ">"]

pprint : Attribute(AttrName(QName(None(), aname)), content)
-> <concat-strings> [" ", aname, "=", <xml-to-string>
content]

pprint : DoubleQuoted(any)
-> <concat-strings>["\\\"", <xml-to-string> any, "\\\""]

pprint : CharDataPart(s) -> s
pprint : JavaEscape(_) -> "%s"

Listing 5.10: Excerpt of the XML pretty printing code

5.2.3 Editor support

Beneficially, all editor services are provided by the original XML sugar
library. This includes syntax colouring, error reporting, content completion,
code folding and outline view. No adaption was necessary because SugarJ
editor services are based on decorated abstract syntax trees and we reuse
the original XML sugar library’s XML syntax and parsed representation.

5.3 BNF

Backus-Naur Form (BNF) was first used by John Backus to describe the syntax
of ALGOL in 1959. It has since become the most widely used notation (with
many flavours and dialects) to describe the context-free part of programming
languages’ syntax.

The most complex part of the JPQL sugar library is parsing the language.
The context free grammar that Oracle provides [4] for documentation, is
over 200 lines for about 70 productions. Unfortunately, this grammar is in
Backus-Naur Form and SugarJ uses the Scannerless GLR parser, which in
turn uses SDF, not BNF, for its syntax descriptions.

Fortunately, SugarJ is self-applicable, meaning it is possible to extend
SugarJ through sugar libraries. Domain-specific languages that aim to
improve on writing other domain-specific languages are called meta-DSLs.

32



In our course of implementing the JPQL sugar library, we decided against
translating the JPQL grammar from BNF to SDF by hand. Instead, we chose
to take advantage of SugarJ’s self-applicability by writing a meta-DSL that
allows us to reuse the JPQL grammar without translation or modification.1

From this effort springs a new sugar library that allows SugarJ devel-
opers to use BNF for describing their language’s syntax, instead of, or in
combination with, the usual way of language description in SugarJ, SDF.

5.3.1 Syntax

There are several dialects of BNF, among them Extended BNF and Augmented
BNF, that are somewhat well specified or even standardised. In addition,
there are countless special-purpose dialects that are only informally defined,
if at all, and are only used for single grammars.

Oracle defined their own BNF dialect and describe it in the documen-
tation containing the JPQL grammar. The BNF sugar library uses Oracles
BNF dialect, it is however easily adaptable for other dialects.

context-free syntax
BnfSort ”::=” BnfTNT -> BnfProduction {cons(”BnfProduction”)}
”\”” BnfLit ”\”” -> BnfTNT {cons(”BnfLiteral”)}
BnfSort -> BnfTNT {cons(”BnfSort”)}
BnfTNT ”*” -> BnfTNT {cons(”BnfStar”)}
”{” BnfTNT ”}” -> BnfTNT {cons(”BnfGroup”)}
BnfTNT BnfTNT -> BnfTNT {right, cons(”BnfSeq”)}
”[” BnfTNT ”]” -> BnfTNT {cons(”BnfOptional”)}
BnfTNT ”|” BnfTNT -> BnfTNT {right, cons(”BnfAlternative”)}

context-free priorities
BnfTNT ”*” -> BnfTNT {cons(”BnfStar”)}

> BnfTNT BnfTNT -> BnfTNT {cons(”BnfSeq”)}
> BnfTNT ”|” BnfTNT -> BnfTNT {right, cons(”BnfAlternative”)}

Listing 5.11: SDF syntax definition for Oracles flavour of Backus-Naur Form

The specification of BNF’s syntax is, for bootstrapping reasons, written
in SDF, an excerpt can be seen in Listing 5.11. SDF’s disambiguation features,
like declaring left or right associativity and ordering productions to show
their priorities, make the definition very concise.

A new SugarJ block header (bnf syntax) was introduced to prelude
a syntax description in BNF, much like SDF syntax blocks are preceded
by context-free syntax. This allows us to define new syntax with BNF
directly in SugarJ files, as you can see in Listing 5.12, which shows the IN
expression as defined in the JPQL grammar.

1some modification was still necessary, to account for ambiguities, see the next section
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bnf syntax
in_expression ::= path_expression [”NOT”] ”IN”

”(” {in_item {”,” in_item}* | subquery} ”)”

Listing 5.12: The BNF meta-DSL allows programmers to use BNF to describe
their sugar library’s syntax

5.3.2 Desugaring

The mapping from BNF to SDF is quite direct. All operations on context-free
languages like the Kleene star, alternatives or sequences are present in either
formalism. This direct mapping translates to the desugaring definition in
Stratego:

bnf2sdf : BnfSort(s) -> sort(<camel-case> s)
bnf2sdf : BnfStar(s) -> iter-star(s)
bnf2sdf : BnfGroup(s) -> s
bnf2sdf : BnfOptional(s) -> opt(s)
bnf2sdf : BnfAlternative(a, b) -> alt(a, b)
bnfseq1 : BnfSeq(a, seq(b, c)) -> seq(a, [b|c])
bnfseq2 : BnfSeq(a, b) -> seq(a, [b])

Listing 5.13: Excerpt from the BNF desugaring code reflects the direct
translation of most context-free language constructs from BNF (on the left)
to SDF (on the right)

The generation of SDF productions, however, is not enough for practical
use in SugarJ. An abstracty syntax tree returned by the SugarJ parser, con-
tains only nodes declared with the cons("name") meta-data. We decided to
generate a node for every production and name it the same as the production
itself.

We further decided to let the grammar generate a concrete syntax tree,
retaining all terminals2 because of its greater flexibility. It is easy to go from
concrete to abstract by filtering out nodes, whereas the opposite direction,
which is frequently needed for (pretty) printing, is a little more difficult.

The desugared form of the in expression production from Listing 5.12
with terminal symbols inlined is shown in Listing 5.14 below. As you can
see the bracketing is different, this is due to different precedence rules in
SDF and BNF. Fortunately, because we only deal with abstract syntax trees
in desugaring, all of this complexity is handled by the BNF parser and the
SDF pretty printer.

2but no whitespace
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PathExpression ”NOT”? ”IN” ”(” ( InItem ( ”,” InItem )* )
| Subquery ”)” -> InExpression {cons(”InExpression”)}

Listing 5.14: Desugared production from Listing 5.12

5.4 Java Persistence Query Language

5.4.1 Syntax

Thanks to the BNF meta-DSL developed in the previous section, we were
able to mostly just copy and paste the JPQL grammar provided by Oracle
for documentation.

Unfortunately, this grammar as it is, is ambiguous, and removing these
ambiguities required some manual intervention. Presumably, for documen-
tation purposes, the part that deals with arithmetic, functions on strings and
dates, and boolean values and expressions tries to encode a type system in
the grammar.

Because it is provided for documentation only, the context free grammar
omits dealing with lexical issues like number formats and string syntax,
but the prose following the grammar describes them in detail. We took
the liberty to ignore some of those descriptions. Strings, for example, are
delimited not by double quotes ("java string") like in Java, but by single
quotes (’jpql string’). The reason is likely to avoid escaping every double
quote, as the usual means of embedding JPQL code in Java is as a string.
Because the JPQL sugar library removes this problem altogether, we chose to
reuse Java string syntax for JPQL string syntax by defining string literal
::= JavaStringLiteral. We reuse the Java syntax description in a similar
way for several other lexical constructs like numbers and what would be
table and column names in a relational database, but are actually Java class
names and identifiers in JPQL.

5.4.2 Desugaring

Because JPQL already has an embedding in the host language, as strings
and setParameter calls on Query objects, the desugaring is trivial.

The desugaring is reprinted in Listing 5.15 in its entirety. It is this
compact because pretty printing in this case is flattening of a concrete syntax
tree (qls2str) and because it makes heavy use of higher-order strategies.

The query, represented as an abstract syntax tree after parsing, is flat-
tened and pretty printed to a string. A factory method in the EntityManager
creates a Query object from a query string and this Query is then augmented
by as many setParameter calls as necessary.
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strategies
arglist = ?p1#(p2); !p2
/** Takes a concrete syntax tree

and returns a pretty printed string */
qls2str = bottomup(is-string <+ arglist); flatten-list;

separate-by(|" "); concat-strings
named-params = collect(\NamedInputParameter(name) -> name\)
strip-colon = trim-chars(’:’)
set-parameter = ?(param, subtree);

!Invoke(Method(subtree, None(), Id("setParameter")),
[Lit(String([Chars(<strip-colon> param)])),
ExprName(Id(<strip-colon> param))])

rules
compileQuery : QueryCreation(ExprName(em-id), qls)
-> <foldr(!Invoke(Method(MethodName(AmbName(em-id),

Id("createQuery"))),
[Lit(String([Chars(<qls2str> qls)]))]),

set-parameter)> <named-params> qls

Listing 5.15: The complete JPQL desugaring

5.4.3 Editor support

Anecdotal evidence suggest that basic syntax highlighting is helpful to
quickly scan code. Fortunately, with SugarJ, it is also very easily imple-
mented and still robust. In Listing 5.16 below, you see all the code needed
to make the editor highlight “SELECT” and “FROM” in JPQL queries. For
many sugar libraries there is even less code needed as SugarJ tries to recog-
nise keywords automatically, as the accessors sugar library demonstrates.

colorer
_.SelectClause : 127 0 85 bold
_.FromClause : 127 0 85 bold

Listing 5.16: SELECT and FROM will be displayed in bold, purple font

SugarJ highlighting operates on the parsed representation, SelectClause
and FromClause are the names of the corresponding nodes in the abstract
syntax tree. This is more robust than, for example, regular expressions that
are used in many editors for colouring purposes. The Sugarclipse editing
environment would not highlight a field named “from”, even if it was
allowed by the grammar, which forbids keywords as identifiers. Mistakes
of this kind are identified and brought to the programmer’s attention by the
JPQL Sugar library.
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Another piece of support the JPQL Editor library provides is code fold-
ing, implemented as follows:

folding
SelectClause
FromClause
WhereClause

Automatic code completion is provided through this kind of declaration:

completions
completion template :

”SELECT ” <id>
completion template :

”SELECT ” <id> ” FROM ” <id>

The editor services for JPQL are only 32 lines, but already offer the same
features as the SQL modes of Emacs, vim and many other editors. It is also
more robust through decoration of abstract syntax trees.

5.4.4 Static checks

We implemented one static check as a proof of concept.
The JPQL Sugar library alerts the programmer of the use of undeclared

identification variables like in the following query:

SELECT item.name FROM Item item WHERE ietm.id = 42

Listing 5.17: ietm is undefined. Figure 4.9 shows Eclipse highlighting a
similar error

SugarJ provides a generic way to report errors in Eclipse. It runs the
constraint-error strategy provided by the sugar library on the parse tree
before desugaring and marks the erroneous AST nodes returned by it.

The general idea of finding undeclared identifiers, is to traverse the
syntax tree, collect all bindings, and return failure when we find the use of
an identifier that is not declared.

The implementation of this idea for the JPQL Sugar library is a little
more convoluted. There are three reasons this check is 30 lines of code and
not only one or two: (1) the grammar allows several distinct ways to declare
and reference identification variables, not just one each, (2) the scope of a
binding is not restricted to its children in the abstract syntax tree, and (3) we
want to return all unbound identifiers at once, so it is easier to find and fix
mistakes in the declaration.

Reason (1) poses no conceptional problem; we just need to introduce
more patterns to match declaration and use sites. Reason (2) prevents
us from using a general top-down and collect-all strategy, instead we
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need to implement scoping explicitly and implement the traversal more
explicitly. For example, we match on the SELECT clause node and first collect
bindings in the FROM clause and only then proceed to check the actual SELECT
statement and its subtree. This makes (3) more of an effort, because we need
to pass the list of errors-so-far around explicitly.

rules
idvdecs = idvdec1 <+ idvdec2
idvdec1 : FromClause(_, idvd, idvdlist) -> <conc>(<idvdecs>

idvd, <concat> <map(idvdecs)> idvdlist)
idvdec1 : IdentificationVariableDeclaration(rvd, joinlist)

-> <conc>(<idvdecs> rvd, <concat> <map(idvdecs)>
joinlist)

idvdec1 : RangeVariableDeclaration(_, _,
IdentificationVariable(name)) -> [name]

idvdec2 = arglist; map(idvdecs); concat
strategies
idv-part = string-tokenize(|[’.’]); first
check-sql(|names) = ss(|names)
idv(|names) = ?iv@IdentificationVariable(name);

if <elem> (name, names)
then ![]
else ![(iv, <concat-strings>["Identification variable ",

name, " is not in scope."])]
end

pe(|names) = ?pe@PathExpression(path);
if <elem>(<idv-part> path, names)

then ![]
else ![(pe, <concat-strings>["Identification varible ",

<idv-part> path, " is not in scope."])]
end

ss(|names) = ?SelectStatement(sc, fc, wc, gc, hc, oc);
!fc; idvdecs; ?addnames; <conc>(names, addnames); ?

newnames;
![sc, wc, gc, hc, oc]; map(collect-all(idv(|newnames)

<+ pe(|newnames))); flatten-list

Listing 5.18: Excerpt from the static check for undeclared identification
variables
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6. Discussion and future work

In this section, we discuss the suitability of the Java Pet Store as a model
for a real world legacy application, the proposed process for retrofitting
language-oriented design and its limitations, as well as the choice of SugarJ.

6.1 The Java Pet Store as a model legacy application

In our humble opinion, much of the recent work in software engineering
is very interesting but not necessarily immediately practical. Work on test-
driven, model-driven, and agile development as well as the general area
of language-oriented design focuses mostly on the development of new
applications but neglects the fact that it is not practical for most of the
industry to rewrite their software from scratch with every advancement in
software engineering processes.

We would like for the Java Pet Store to become the Drosophila melanogaster1

of software engineering. We think, that a common reference application
would help researchers trying to find a way to apply their new ideas on
legacy code bases, too. The use of models in other disciplines and other
areas in computer science, suggests that it encourages collaboration and
improves comparability of results. The focus on one model also helps to
avoid work that repeats known concepts in only a slightly different stetting.
The state of the art in functional programming languages, e.g., would not
be where it is today if not for Haskell, a language specifically designed to be
the common research model for a strongly and statically typed, pure, lazy,
functional programming language.

Several of its properties make the Java Pet Store a good model for a legacy
application. It has a common client-server architecture with user interaction
through a web interface and a database backend, which is abstracted by a
object-relational persistence layer common in the industry. The code itself is
object-oriented Java with some use of XML and a SQL-like query language,
and most of the user interface is written in Java Server Pages. Like most
applications in the wild, its documentation, besides JavaDoc strings, is

1Common fruit fly – a model organism in genetics, physiology, and life history evolution
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rather poor. Last but not least, it is very stable, the latest Subversion commit
is from June 2007, and it is distributed under a liberal license.

Unfortunately, the test coverage of the Java Pet Store code is rather
incomplete, but we expect that a few theses on tests engineering, focusing
on the Java Pet Store as a model application, would make it one of the most
comprehensively tested applications. We suspect that Java might not be
the best target for language-oriented research, but the work on the Java
Syntactic Extender [1], the Meta Programming System [16], and SugarJ [8]
suggest otherwise.

6.2 Retrofitting language-oriented design and the role
of SugarJ

The interaction of code that uses sugar libraries with tools written for classic
Java code is of special importance for the applicability and acceptance of
our proposed retrofitting process by the industry.

SugarJ is text-based, as opposed to projectional workbenches like MPS
[6, 16], so interaction with text-oriented software that does not need to
analyse code, e.g., version control, poses no difficulties.

For Eclipse, there is a plugin called Sugarclipse that provides a complete
editing environment for SugarJ code. Moreover, the editing environment is
extensible through editor libraries [7] and is therefore capable of growing to-
gether with the language. Integration with other development environments
is not inhibited by design, but currently Eclipse is the only choice.

The semantics of languages embedded through sugar libraries are de-
fined through translations to Java, so the last resort to tooling is first running
the SugarJ compiler to generate Java code and then using any other tools
on the generated Java code. There is a command line compiler that mim-
ics javac and can be used from make or ant to compile SugarJ code, but
integration with build tools has not yet been tested exhaustively.

For now, debugging is restricted to generated Java source code, and sub-
sequently generated JVM byte code. Unfortunately, debugging on the level
of SugarJ code is currently impossible because all source level information
is lost during desugaring. Retaining source level information across pro-
gram transformations is an interesting field providing many future research
opportunities.

One criticism of M. P. Ward’s language-oriented programming approach
[17] is that creating programming languages is difficult. This criticism
naturally transfers to our proposed process of retrofitting language-oriented
design. The design and implementation of a sugar library indeed requires a
wide area of skills; some theoretical background on formal languages and
parsing techniques, experience with Java as the host and target language,
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experience with meta-programming, compilers or program transformation,
and last but not least, familiarity with the domain in question.

Paul Hudak [10] addressed this difficulty and proposed embedded
domain-specific languages that reuse most of the host language’s syntax
and semantics. This eliminates much of the design and implementation
work, but also sacrifices the benefits of domain-specific concrete syntax
and flexible semantics. By basing our approach on composable, reusable,
independent libraries, we reduce the complexity of embedded language
design. Small, independent language extensions are easier to design and can
be used jointly to simplify a complex code base. Whether the incremental
addition of rather small domain-specific libraries can improve the overall
architecture of a large application is something we would like to explore
more comprehensively in the future.

Writing sugar libraries can also be made more accessible by exploiting
SugarJ’s self-applicability. It is already possible to use concrete Java syntax
for code that is to be generated instead of writing down the corresponding
abstract syntax tree nodes manually. The BNF sugar library written in the
course of this work frees sugar library developers from learning SDF.

The use of existing sugar libraries requires no expertise in language
design, but an understanding of the desugaring is still helpful to recognise
code that might be improved by use of a sugar library. In the future, we
hope to work on automatic recognition of code improvable by existing sugar
libraries. Research in this area might even result in an automatic conversion
tool that would eliminate the fourth step, adaption of existing code, from
our process of retrofitting language-oriented design.

Perhaps the most interesting direction of future work is to study fun-
damentally the interactions of static analyses in general and type systems
[2] in particular. Even a complete Java type system only, will enable the
JPQL sugar library to guarantee type safety of JPQL queries and semantic
code completion in the editing environment. We do not claim to foresee the
applications of an extensible type system.
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7. Conclusion

We proposed a process for retrofitting Java-based object-oriented legacy
applications with language-oriented design. We are able to reduce initial
investment, a hurdle to industry adoption, by relying on reusable, compos-
able, and independent sugar libraries and keeping the overall architecture
of an application intact. The incremental applicability of our retrofitting
process ensures that the software is production ready at all times because
partial local rewriting can be deferred as necessary.

To demonstrate the positive effects of language-oriented design on legacy
applications in general and the application of our retrofitting process in
particular, we made a case study of applying our process to the Java Pet
Store. The resulting improvements in code quality are encouraging and the
by-products, several sugar libraries, are immediately reusable for other code
improvement efforts.

With this work we aim to narrow the gap between advanced processes
proposed by the research community and the reality in the software industry.
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termann. SugarJ: Library-based syntactic language extensibility. In
Proceedings of Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications (OOPSLA), pages 391–406. ACM, 2011.

[9] Jan Heering, P. R. H. Hendriks, Paul Klint, and J. Rekers. The syn-
tax definition formalism SDF – reference manual. SIGPLAN Notices,
24(11):43–75, 1989.

43



[10] Paul Hudak. Modular domain specific languages and tools. In Proceed-
ings of International Conference on Software Reuse (ICSR), pages 134–142.
IEEE, 1998.

[11] Lennart C. L. Kats, Maartje de Jonge, Emma Nilsson-Nyman, and
Eelco Visser. Providing rapid feedback in generated modular language
environments. Adding error recovery to scannerless generalized-LR
parsing. In Proceedings of Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 445–464. ACM,
2009.

[12] The Java Community Process. JSR 220: Enterprise JavaBeans™ 3.0.
Available at http://jcp.org/en/jsr/detail?id=220, 2006.

[13] Guy L. Steele, Jr. Growing a language. Higher-Order and Symbolic
Computation, 12(3):221–236, 1999.

[14] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew
Flatt, and Matthias Felleisen. Languages as libraries. In Proceedings of
Conference on Programming Language Design and Implementation (PLDI).
ACM, 2011.

[15] Eelco Visser. Stratego: A language for program transformation based on
rewriting strategies. In Proceedings of Conference on Rewriting Techniques
and Applications (RTA), volume 2051 of LNCS, pages 357–362. Springer,
2001.

[16] Markus Voelter. Embedded software development with projectional
language workbenches. In Proceedings of Conference on Model Driven
Engineering Languages and Systems (MoDELS), volume 6395 of LNCS,
pages 32–46. Springer, 2010.

[17] M. P. Ward. Language-oriented programming. Software – Concepts and
Tools, 15:147–161, 1995.

Appendix. Find all code and future revisions of this thesis here:
http://www.mathematik.uni-marburg.de/∼fehrenbach/bsc

44


